

USB interface compatible

 $\rm X7000A\, evaluation\, kit$

X7000 SERIES EV.KIT

User's Manual Ver. 1. 0. 0

http://www.kyopal.co.jp/

MNLX7000A.EV_e_ver.1.0.0_210716

Table of contents

1. Ove	erview	1
1-1	Introduction	1
1-2	Constitution	1
1-3	Description of configuration	2
1-4	X7023A-EV.BOARD switch and LED description	2
1-5	ExIO-01 switch and LED description	5
2. Abo	out the application	7
2-1	Application configuration	7
2-2	Launch application	7
2-3	Description of the main screen	8
2-4	Language change	9
2-5	Display button of the various settings and sub-status	9
$2 \cdot 5 \cdot 1$	Initial setting screen and setting method.	. 10
2 - 5 - 2	Mode setting screen and setting method	. 16
2 - 5 - 3	Interrupt mask setting screen and setting method	20
$2 \cdot 5 \cdot 4$	Interrupt flag register and reset	23
2 - 5 - 5	Display sub-status	26
2-6	About parameter	28
2-6-1	Parameter input	28
2-6-2	error indication	28
2-6-3	Parameter register type and setting range	29
2-6-4	Precautions for parameter setting	. 30
2-7	About drive mode	. 31
2 - 7 - 1	Operation control mode	. 31
2 - 7 - 2	Command settings	32
2-8	About drive operation buttons	33
2-8-1	Start button	33
2-8-2	Constant speed button	34
2-8-3	Deceleration button	34
2-8-4	Deceleration stop button	. 34
2-8-5	Synchronous start button	34
2-8-6	Emergency stop button	34
2-9	About counter display	35
2 - 9 - 1	Counter A, B	35

2-9-2	2 Counter C	35
2-9-3	3 Counter D	36
2-9-4	Counter F	36
2-9-8	5 Pulse rate (pulses per second)	36
2-10	About counter operation and batch setting of general-purpose output	37
2-10	-1 Clear the counter	37
2-10	-2 Counter preset	37
2-10	-3 General-purpose output batch setting (hexadecimal)	38
2-11	About main status and output operation	39
2-11	1 Operating status	40
2-11	2 Sensor status	40
2-11	·3 Driver status	40
2-11	4 Driver operation	41
2-11	5 General-Purpose Input Status	41
2-11	6 General-purpose output operation	42
2-11	7 Comparator status	42
3. Ab	oout hardware	43
3-1	X7023A-EV.BOARD	43
3-1-1	Specifications List	43
3-1-2	2 Block Diagram	44
3-1-3	3 Input / output function	45
3-1-4	Connector signal arrangement / function	48
3-1-8	5 LED display and operation switch	51
3-1-6	3 I / O circuit and external connection	53
3-1-7	7 Circuit diagram	54
3-1-8	BOM	54
3-2	ExIO-01	55
3-2-1	Connector signal arrangement / function	55
3-2-2	2 LED display and operation switch	56
3-2-3	3 Check pin $(T1 \sim 5)$	56
3-2-4	4 circuit diagram	56
3-2-8	5 BOM	56
4. At	oout firmware	57
4-1	STM32 development environment	57
4-1-1	Development environment	57
4-1-2	2 Development environment setup procedure	57

4-2	Setting	57
Revisio	n history	58

1. Overview

1-1 Introduction

X7000 SERIES EV.KIT is a kit to evaluate the performance of motion control LSI (X7083A / X7043A / X7023A). This kit uses X7023A (2-axis). X7000 series is software compatible and has the same characteristics, it can also be used for evaluation on the X7083A (8-axis) and X7043A (4-axis).

This kit uses ARM (STM32F103VET6) for the CPU. You can rewrite and debug your own firmware through the 6PIN debug interface.

For external input / output, there are sensor driver I / F for 2-axis, CN1 and CN2. CN1 is a differential I / F and CN2 is an open collector I / F. By connecting ExIO-01 to CN1 and CN2 of X7023A-EV.BOARD, you can evaluate the X7000 series and debug the created software without the actual machine.

1-2 Constitution

connector	Description
CD14	Connect the differential I / O motor driver and the open collector sensor IO. If you connect
CNI	ExIO-01, you can evaluate and debug the software without the actual machine.
CD IO	Connect the open collector motor driver and sensor IO. If you connect ExIO-01, you can
UNZ	evaluate and debug the software without the actual machine.
	Connect your PC and X7023A-EV.BOARD via USB (A miniB). You can check the basic
CN3	functions and usage of X7023A by starting the Windows application (X7023-Conttroller)
	of this kit. The internal circuit of this board uses a USB power supply.
CN4	SWD interface for debugging and programming Cortex-M. Connect ST-LINK. You can
	also program using the STMicroelectronics development board.
CN5	External power input for sensors and drivers. Input $DC12 \sim 24V$.

1-3 Description of configuration

1-4 X7023A-EV.BOARD switch and LED description

① SW1

No.	Signal	Description
1	IN7	It is an 8-bit parallel input connected from IN0 (LSB) to IN7 (MSB) of X7023A.
2	IN6	IN0 can be interrupted by changing from OFF to ON.
3	IN5	
4	IN4	
5	IN3	
6	IN2	
7	IN1	
8	IN0	

② SW2

No.	Signal	Description						
1	CP3	t is connected to CP3 of X7023A. If it is turned ON during linear interpolation,						
		it will decelerate.						
2	CP2	It is connected to CP2 of X7023A. If it is turned ON during linear interpolation,						
		the speed will be constant.						
3	CP1	It is connected to CP1 of X7023A. If it is turned ON during linear interpolation,						
		it will decelerate and stop.						
4	CP0	It is connected to CP0 of X7023A. If it is turned ON during linear interpolation,						
		it will stop immediately.						
5	CLRA2	If it is turned ON, counter A of Axis # 2 will be cleared to 0.						
6	CLRA1	If turned ON, counter A of Axis # 1 will be cleared to 0.						

③ SW3

This is a reset signal. Pressing the push button will reset the CPU and X7023A.

④ LED 1-8

No.	Signal	Description
1	ОТО	Lights when the general-purpose output OUT0 is turned ON.
2	OT1	Lights when the general-purpose output OUT1 is turned ON.
3	OT2	Lights when the general-purpose output OUT2 is turned ON.
4	ОТЗ	Lights when the general-purpose output OUT3 is turned ON.
5	OT4	Lights when the general-purpose output OUT4 is turned ON.
6	OT5	Lights when the general-purpose output OUT5 is turned ON.
7	OT6	Lights when the general-purpose output OUT6 is turned ON.
8	OT7	Lights when the general-purpose output OUT7 is turned ON.

⑤ LED 9-16

No.	Signal	Description							
9	PWR	hen connected to a PC via USB, the power turns on and lights up.							
10	COM	hts when USB communication is performed with the PC.							
11	MOV1	Lights when Axis #1 is driven.							
12	ERR1	Lights when Axis #1 stops due to an error.							
13	CMP1	Lights when the condition of the Axis #1 comparator is satisfied.							
14	MOV2	Lights when Axis #2 is driven.							
15	ERR2	Lights when Axis #2 stops due to an error.							
16	CMP2	Lights when the condition of Axis #2 comparator is satisfied.							

1-5 ExIO-01 switch and LED description

① SW1

No.	Signal	Description
1	EL-	You can turn on / off the sensor input -EL.
2	EL+	You can turn on / off the sensor input +EL.
3	SD-	You can turn on / off the sensor input -SLD.
4	SD+	You can turn on / off the sensor input +SLD.
5	ORG	You can turn on / off the sensor input ORG.
6	MARK	You can turn on / off the sensor input MARK.
7	INP	You can turn on / off the sensor input INP.
8	ALM	You can turn on / off the sensor input ALM.
9	EZ	You can turn on / off the sensor input EZ.
10	EZSEL	Turns ON when ExIO-1 is connected to CN1 and OFF when connected to CN2.

② LED1,2

No.	Signal	Description								
1	CLR	Lights when the CLR output is ON.								
2	SON	Lights when the SON output is ON.								

3 T1-5

No.	Signal	Description
1	T1	It is connected to 0V of DC12 \sim 24V power supply connected to CN5.
2	T2	PDIR- and EB- are loopback connected. Check pin for waveform measurement.
3	Т3	PDIR+ and EB+ are loopback connected. Check pin for waveform measurement.
4	T4	POUT- and EA- are loopback connected. Check pin for waveform measurement.
5	T5	POUT+ and EA+ are loopback connected. Check pin for waveform measurement.

2. About the application

- 2-1 Application configuration
 - Application installation folder
 - X7023-Controller.exe
 - X7023-Controller.exe.Config
 - Language folder
 - Chinese.xml
 - English.xml
 - Japanese.xml

Application launch file Application configuration file

Chinese dictionary file English dictionary file Japanese dictionary file

2-2 Launch application

LED9 (PWR) lights up when the CN3 of the X7023A-EV.BOARD is connected to the USB port of the PC. Double-click X7023-Controller.exe to display the main screen.

🛃 X7023A	📱 X7023A-EV Ver1.01 X											
-Counter-	#1 #0					Parameter	′S	#0	Language			
			#1				#2	•		#I	#Z	English 🗸
A				(0	RO	120	200	設定
В				()			0	R1	0	0	Initial
с				()			0	R3	4096 5120	41 00 256	ModeSet
D				()			0	R5	1317	9216	Int. Mask
F				()			0	R0 R7	2050	0	Int. Flag
PPS				()			0	R8 CMP	2115848 0	9732 0	Status
Operation	n Status							G.P.	#1 Coounter op	ration	#2 Counter o	peration
#1	CLR	INT	DONE	ERR	DOWN	UP	MOVE	Bulk set	Clear	Preset	Clear	Preset
#2	CLR	INT	DONE	ERR	DOWN	UP	MOVE	00 _{Hex}	A	0	A	0
-Sensor S	tatus								В	0	В	0
#1	+EL	-EL	+SLD	-SLD	ORG	EZ	MRK	_#1 Drive mode		#2 Dr	rive mode	
#2	+EL	-EL	+SLD	-SLD	ORG	ΕZ	MRK	Sync control	Linear acc/dec		ync control Line	earacc/dec 🗸
Driver					Сотра	rator		Interpolation	Auto. calc.	In	iterpolation Aut	to. calc. 🗸
#1	CLR	SON	ALM	INP	#1	P=Q	P>Q	Index drive		v Inde:	× drive	~
#2	CLR	SON	ALM	INP	#2	P=Q	P>Q	+ Direction	~ (00 _{Hex} + Dir	rection 🗸	00 _{Hex}
General-	purpose inp	outs/outpu	uts									
IN7	IN6	IN5	IN4	IN3	IN2	IN1	INO	#1 Constant-sp	_ #1	#1 Deceleration	#1 Start	Synchrono
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUTO	eed	Deceleration	stop		
Connecte	d to COM7						Ŷ	#2 Constant-sp eed	#2 Deceleration	#2 Deceleration stop	#2 Start	Emergency stop

Various settings and sub-status display buttons Counter display Exit application parameter settings Language change 🛃 X7023A-EV Ver1.01 Counter Parameters anguage #1 #2 #2 #1 English 0 0 А RO 設定 0 R1 0 0 Initial в R2 4096 410 R3 0 0 ModeSet С R4 0 0 R5 Int. Mask D R6 0 0 R7 Int. Flag E 2115848 R8 0 0 Status PPS СМР 0 Operation Status G.P. #1 Coounter opration #2 Counter operation CLR INT DONE ERR DOWN UP MOVE Bulk set Clear Preset Clear Preset #1 #2 CLR INT DONE ERR DOWN UP MOVE 00 Hex А А 0 0 В 0 В 0 Sensor Status #1 +EL -EL +SLD -SLD ORG ΕZ MRK #2 Drive mode #1 rive mode +EL -EL +SLD -SLD ORG ΕZ MRK #2 ync control Linear acc/dec Sync control Linear acc/dec \sim Interpolation Auto. calc. đ Interpolation Auto, calc. Driver Comparator \sim CLR SON ALM #1 INP #1 P=Q P>Q ndex drive Index drive INP #2 CLR SON ALM #2 P>Q Q + Direction 00 Hex + Direction 00 не General-purpose inputs/outputs #1 Deceleration stop Synchrono #1 Constar IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 #1 Deceleration #1 Start QUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUTO eed Emergency stop #2 Constan eed #2 Deceleration stop onnected to COM7 #2 Deceleration #2 Start Message window Main status and output operations Drive operation Drive command and mode

2-3 Description of the main screen

Counter operation and general-purpose output batch setting

2-4 Language change

The display on the main screen changes when you select the language to use from Japanese, English, and Chinese. From the next time, it will be displayed in the selected language.

2-5 Display button of the various settings and sub-status

Click the mode setting button to display the control mode setting screen. After power-on reset, it is necessary to set the control mode at least once before driving.

Click the interrupt mask button to display the interrupt mask setting screen.

Click the interrupt flag button to display the interrupt flag status. You can reset the interrupt flag on this screen.

Click the status button to display the sub-status display screen. In the sub status, you can check the stop factor and the status of the comparator.

2-5-1 Initial setting screen and setting method.

Each initialization register can be changed by switching 10 tabs.

When you click the button writing the value of each initial setting register (hexadecimal) is set to X7023A.

① Pulse output initial setting register

50h	51h	52h	53h	54h	55h I	55h II	56h	57h	58h	
Pulse	e Output	Init-Se	tting Rea	ζ.						
		OFF:0				AO -	l: 1		#1	#2
0.5 F	Pulse Idlin	E			1.5 Pulse	Idling				Bit0
Unde	efined (0 :	should b	e set)							Bit 1
+ Di	rection is	CW Puls	e Output		+ Directio	on is CCV	V Pulse (Dutput		🗌 Bit2
CW/	CCW 2-C	LK Syste	em		PULSE/D	IR Gate :	System			🗌 Bit3
Unde	efined (0 :	should b	e set)							Bit4
Unde	efined (0 :	should b	e set)							Bit5
Unde	efined (0 :	should b	e set)							Bit6
Flag	-ON wher	n Pulse (Complete	±	Flag-ON	when Pos	sitioning	Complete	ed 🗌	🔲 Bit7

When using ExIO-01 for loopback counting, use the 2-clock method.

② Encoder input initial setting register.

2-clock negative logic.

It will be reflected in

③ Initial setting register of counter A

Absolute value count, 2's complement count, 24-bit mode, and 32-bit mode can be selected. The settings are reflected in the display of the count value on the main screen and the input of the count operation. The count of the object you can choose the internal oscillation pulse or encoder feedback pulse. If you want to use it as a deviation counter, check bits0,1,3.

④ Initial setting register of counter B

It is similar to the initial setting register of the counter A.

(5) Input initial setting register

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 5	58h
Input Init-Setting Reg.		
OFF:0	ON:1	#1 #2
+SLD and -SLD are Dec. inputs	+SLD and -SLD are Dec. stop inputs	🗌 🗌 Bit0
+SLD and -SLD are Level inputs	+SLD and -SLD are Edge inputs	🗌 🗌 Bit 1
ORG is a low-sensitivity input	ORG is a high-sensitivity input	🗌 🗌 Bit2
MARK is a low-sensitivity input	MARK is a high-sensitivity input	🗌 🗌 Bit3
CLRA is the level clear input	CLRA is the edge clear input	🗌 🗌 Bit4
Undefined (0 should be set)		Bit5
Undefined (0 should be set)		Bit6
Undefined (0 should be set)		Bit7

6 Input logic of the initial setting register ~ I

50h	51h	52h	53h	54h	55h I	55h II	56h	57h	58h	
Input	Logic In	it-Setti	ng Reg.	I						
	(OFF:0				ON	:1		#1	#2
+EL is	s a NEG	logic inp	ut		+EL is a	POS logic	; input			Bit0
-EL is	s a NEG	logic inp	ut		-EL is a	POS logic	; input			🔲 Bit 1
ALM	is a NEG	i logic inp	out		ALM is a	ı POS logi	c input			🔲 Bit2
Undet	fined (0 s	should be	set)							Bit3
Undet	fined (0 s	should be	e set)							Bit4
Undet	fined (0 s	should be	set)							Bit5
Undet	fined (0 s	should be	e set)							Bit6
Undet	fined (0 s	should be	set)							Bit7

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 58	h
Input Logic Init-Setting Reg. II		
OFF:0	ON:1	#1 #2
ORG is NEG logic	ORG is POS logic	🗌 🗌 Bit0
EZ is NEG logic	EZ is POS logic	🗌 🗌 Bit 1
+SLD is a NEG logic input	+SLD is a POS logic input	🔲 🗌 Bit2
-SLD is a NEG logic input	-SLD is a POS logic input	🗌 🗌 Bit3
INP is a NEG logic input	INP is a POS logic input	🗌 🗌 Bit4
MARK is a NEG logic input	MARK is a POS logic input	🗌 🗌 Bit5
Undefined (0 should be set)		Bit6
Undefined (0 should be set)		Bit7

0 Input logic of the initial setting register $\ \ II$

⑧ Initial setting register (F) for input filter

Enter in the range of 1-256 in the input text box. The value of the initial setting register in hexadecimal When you enter the Enter key will be reflected.

\bigcirc Output initial setting register

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 5	8h
Init-Setting Reg. for Output		
OFF:0	ON:1	#1 #2
CLR is 1-shot output	CLR is general-purpose output	🗌 🗌 Bit0
Undefined (0 should be set)		Bit 1
Undefined (0 should be set)		Bit2
Undefined (0 should be set)		Bit3
Undefined (0 should be set)		Bit4
Undefined (0 should be set)		Bit5
Undefined (0 should be set)		Bit6
Undefined (0 should be set)		Bit7

(1) Initial Setting Register for Output Logic

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 8	58h
Init-Setting Reg. for Output Logic		
OFF:0	ON:1	#1 #2
POUT is a NEG logic output	POUT is a POS logic output	Bit0
PDIR is a NEG logic output	PDIR is a POS logic output] 🗌 🗌 Bit 1
CLR is a NEG logic output	CLR is a POS logic output	🗌 🔲 🔲 Bit2
INT is a NEG logic output	INT is a POS logic output	Bit3
ERROR is a NEG logic output	ERROR is a POS logic output	📄 📄 Bit4
MOVE is a NEG logic output	MOVE is a POS logic output	🗌 🗌 Bit5
Undefined (0 should be set)		Bit6
Undefined (0 should be set)		Bit7

Bit3 INT logic is fixed to negative logic.

Each mode setting register can be changed by Click when you				
switching 5 tabs.	mode setting.			
Mode setting				
Select Code	#2 60h 61h 62h 63h 64h			
60h Operation Control Mode Reg. 00	00 Operation Control Mode Reg.			
61h Counter A Control Mode Reg. 00	OFF:0 ON:1	#1 #2		
Silk Country D Control Made Day	Sync start control is disabled Sync start control is enabled	Bit0		
	Dec start point control code 1 #1 Auto. calc.	Bit1		
54h Comparator Control Mode Reg. 00	Dec start point control code 2 #2 Auto. calc.	🔲 🔲 Bit2		
	Interpolation control is disabled Interpolation control is enabled	🔲 🗖 Bit3		
	Linear Acc/Dec mode S-shaped Acc/Dec mode	🔲 🗖 Bit4		
	Parabolic Sine	🔲 🗖 Bit5		
	Undefined (0 should be set)	Bit6		
	Dedefined (0 should be set)	Bit7		
		Write		
		T		
Mode setting register type	Register bit description.			
and select code.				
	Change by turning the check ON / OFF for			
	each bit. The change is reflected in the value			
	(hexadecimal number) of each mode setting			
Value of each mode s	etting			
register (hexadecimal)	10210001.			
	Click the write but	ton to set		
	the value (hexade	ecimal) of		

2-5-2 Mode setting screen and setting method

each mode setting register to

X7023A.

1 0 Operation control mode setting register

60h 61h 62h 63h 64h	
Operation Control Mode Reg.	
OFF:0	ON:1 #1 #2
Sync start control is disabled	Sync start control is enabled 🛛 🗌 Bit0
Dec start point control code 1	#1 Auto. calc.
Dec start point control code 2	#2 Auto. calc.
Interpolation control is disabled	Interpolation control is enabled
Linear Acc/Dec mode	S-shaped Acc/Dec mode Bit4
Parabolic	Sine Bit5
Undefined (0 should be set)	Bit6
Undefined (0 should be set)	Bit7
Auto. calc.	You can also change it from the pull-down menu.
Auto. calc. Offset setting	It will be reflected in
Manual setting No deceleration	the check.
#1 Drive mode	#2 Drive mode
Auto. calc.	Auto. calc.

The operation control mode setting is reflected in the drive mode on the main screen.

② Counter A Control Register

③ Counter B Control Register

60h 61h 62h 63h 64h			
Counter B Control Reg.			
OFF:0	ON:1	#1 #2	
Auto. clr does not occur after error sto	Auto, clr occurs after error stop	🗌 🗌 Bit	t0
Auto, clr does not occur after normal s	Auto. clr occurs after normal stop	🔲 🗌 Bit	t1
Undefined (0 should be set)		Bit	t2
Undefined (0 should be set)		Bit	t3
Undefined (0 should be set)		Bit	t4
Undefined (0 should be set)		Bit	t5
Undefined (0 should be set)		Bit	6
Undefined (0 should be set)		Bit	t7

④ CLR output control mode register

60h 61h 62h 63h 64h			
CLR Output Control Mode Reg.			
OFF:0	ON:1	#1 #2	
CLR is not Out-Auto after error stop	CLR is Out-Auto after error stop	🗌 🗌 Bit	:0
CLR is not Out-Auto after normal sto	CLR is Out-Auto after normal stop	🗌 🗌 Bit	:1
Undefined (0 should be set)		Bit	2
Undefined (0 should be set)		Bit	3
Undefined (0 should be set)		Bit	4
Undefined (0 should be set)		Bit	5
Undefined (0 should be set)		Bit	6
Undefined (0 should be set)		Bit	7

(5) Comparator control mode setting register

Changes in the comparator control mode are reflected in the CMP parameter settings in the main menu, the comparator status display, and the CMP1 and 2 LEDs on the board.

2-5-3 Interrupt mask setting screen and setting method

Each interrupt mask register can be changed

by switching 4 tabs.

Click the write button to set the value (hexadecimal) of each interrupt mask register to X7023A.

Click when you exit the interrupt

1 Pulse oscillation interrupt mask register

70h 71h 72h 73h			
Pulse Oscillation Interrupt Mask Reg			
OFF:0	ON:1	#1	#2
Normal pulse interrupt disabled	Normal pulse interrupt enabled		🗌 Bit0
Error stop interrupt disabled	Error stop interrupt enabled		🗌 Bit 1
Dec. start point interrupt disabled	Dec. start point interrupt enabled		🔲 Bit2
ISO-speed interrupt disabled	ISO-speed interrupt enabled		🗌 Bit3
Undefined (0 should be set)			Bit4
Maximum Acc.rate interrupt disabled	Maximum Acc. rate interrupt enabled		🔲 Bit5
Undefined (0 should be set)			Bit6
Undefined (0 should be set)			Bit7

2 Counter interrupt mask register

70h 71h 72h 73h			
Counter Interrupt Mask Reg.			
OFF:0	ON:1	#1	#2
Counter A carry interrupt disabled	Counter A carry interrupt enabled		Bit0
Counter A borrow interrupt disabled	Counter A borrow interrupt enabled		Bit 1
Counter B carry interrupt disabled	Counter B carry interrupt enabled		Bit2
Counter B borrow interrupt disabled	Counter B borrow interrupt enabled		Bit3
Undefined (0 should be set)			Bit4
Counter C borrow interrupt disabled	Counter C borrow interrupt enabled		Bit5
Undefined (0 should be set)			Bit6
Undefined (0 should be set)			Bit7

\bigcirc Sensor interrupt mask register

70h 71h 72h 73h			
Sensor Interrupt Mask Reg.			
OFF:0	ON:1	#1	#2
ORG interrupt disabled	ORG interrupt enabled		🗌 Bit0
EZ interrupt disabled	EZ interrupt enabled		🗌 Bit 1
IN0 interrupt disabled	IN0 interrupt enabled		🔲 Bit2
MARK interrupt disabled	MARK interrupt enabled		🗌 Bit3
Undefined (0 should be set)			Bit4
Undefined (0 should be set)			Bit5
Undefined (0 should be set)			Bit6
Undefined (0 should be set)			Bit7

4 Comparator interrupt mask register

70h 71h 72h 73h		
Comparator Intr-Mask Reg.		
OFF:0	ON:1	#1 #2
P = Q interrupt disabled	P = Q interrupt enabled	🗌 🗌 Bit0
P > Q interrupt disabled	P > Q interrupt enabled	🗌 🗌 Bit 1
Undefined (0 should be set)		Bit2
Undefined (0 should be set)		Bit3
Undefined (0 should be set)		Bit4
Undefined (0 should be set)		Bit5
Undefined (0 should be set)		Bit6
Undefined (0 should be set)		Bit7

2-5-4 Interrupt flag register and reset

	Axis #2 pul	se oscillation inte	eri	rupt flag		
	\sim	\mathbf{A}		Axis #1 counte	r interrupt flag	
	$\langle \rangle$	$\langle \rangle$			Axis #2 counte	r interrupt flag
Internunt i		\backslash			/	
nterrupt i						X
-Pulse Us	cillation Int.Flag]
#1	Pulse completion	Error stop		Dec.start point	ISO-speed	Max Acc. rate
#2	Pulse completion	Error stop 🗎		Dec.start point	ISO-speed	Max Acc. rate
				/		
-Counter I	nt.Flag		1	/		
#1	Counter A carry	Counter A borrow	*	Counter B carry	Counter B borrow	Counter C borrow
#2	Counter A carry	Counter A borrow		Counter B carry	Counter B borrow	Counter C borrow
	. =.					
-Sensor In	t.Flag		_			
#1	ORG	EZ 📐		IN0	MARK	
#2	ORG	EZ		IN0 📐	MARK	
Compound	an Int Elaa	/			\backslash	J
Comparat	tor interiag		\mathbf{V}		\mathbf{A}	
#1	P=Q	P>Q		\mathbf{N}	$\langle \rangle$	
#2	P=Q	P>Q	J	\mathbf{A}	$\langle \rangle$	
				\mathbf{A}	$\langle \rangle$	
		A	١xi	is #1 sensor inter	rupt flag	
					Axis #2 sensor	r interrupt flag
Axis #1	comparator interr	rupt flag				

Axis #1 pulse oscillation interrupt flag

Axis #2 comparator interrupt flag

① Pulse oscillation interrupt flag

Pulse completion	Error stop	Dec. start point	ISO-speed	Max Acc. rate

Туре	Color	Description		
Pulse output completed	Green	Pulse output completion interrupt flag is ON		
Error stop Red Error stop interrupt flag is ON		Error stop interrupt flag is ON		
Deceleration start point Green		Deceleration start point interrupt flag is ON		
Constant speed Green		Constant speed interrupt flag is ON		
Maximum acceleration Green		Maximum acceleration rate interrupt flag is ON		

When the flag is ON, the button is displayed in green. When you click the button, the flag will be reset.

The pulse output completion and error stop are reset by the A0h command, so they are reset at the same time.

② Counter interrupt flag

Counter A carry	Counter A borrow	Counter B carry	Counter B borrow	Counter C borrow
-----------------	------------------	-----------------	------------------	------------------

Туре	Color	Description	
Counter A carry	Green	Counter A carry interrupt flag is ON	
Counter A borrow	Green	Counter A borrow interrupt flag is ON	
Counter B carry	Green	Counter B carry interrupt flag is ON	
Counter B borrow	Green	Counter B borrow interrupt flag is ON	
Counter C borrow	Green	Counter C borrow interrupt flag is ON	

When the flag is ON, the button is displayed in green. When you click the button, the flag will be reset.

③ Sensor interrupt flag

ORG	EZ	INO	MARK
-----	----	-----	------

Туре	Color	Description	
ORG	Green	ORG interrupt flag is ON	
EZ	Green	EZ interrupt flag is ON	
INO	Green	IN0 interrupt flag is ON	
MARK	Green	MARK interrupt flag is ON	

The EZ will generate an interrupt if the EZ becomes active after the ORG becomes active and deceleration is completed by the home return drive.

When the flag is ON, the button is displayed in green. When you click the button, the flag will be reset.

④ Comparator interrupt flag

P=Q P>	Q

Туре	Color	Description	
P=Q	Green	P = Q interrupt flag is ON	
P>Q	Green	P > Q interrupt flag is ON	

When the flag is ON, the button is displayed in green. When you click the button, the flag will be reset.

2-5-5 Display sub-status

			Axis #2 interrupt status			
	Chattan					
	Status				×	
	-Intr Stat					
	#1	VULSE	COUNTER	SENSOR	COMPARATOR	
	#2	PULSE	COUNTER	SENSOR	COMPARATOR	
	_Intr Avis	Status				
	In the	#1	#2			
			#2			
	-Normal S	itop Factor Sta	tus			
	#1	ORG	EZ	+SLD	-SLD	
	#2	ORG	EZ	+SLD	-SLD	
	Error Sta	- Esster State	_			
	-Error ato	p ractor statu:	S			
	#1	+EL	-EL	ALM		
	#2	+EL	-EL	ALM)	
Axis #	t1 error st	op factor	Axis #1 norm	al stop factor	status	

Axis #1 interrupt status

Axis #2 error stop factor status

Axis #2 normal stop factor status

1 Interrupt status

The interrupt status indicates the type of interrupt.

	PULSE	COUNTER	R SENSOR COMP	
Туре		Color	Description	
PULSE		Green	Pulse output interrupt flag is ON	
COUNTER		Green	Counter interrupt flag is ON	
SENSOR		Green	Sensor interrupt flag is ON	
COMPARATOR		Green	Comparator interrupt flag is ON	

② Interrupt axis status

Туре	Color	Description
#1	Green	Axis #1 interrupt flag is ON
#2	Green	Axis #2 interrupt flag is ON

③ Normal stop factor status

Туре	Color	Description
ORG	Green	The return to origin by the ORG sensor is completed.
EZ	Green	Home return completed by ORG sensor and EZ sensor.
+SLD	Green	+ SLD sensor slowdown stop
-SLD	Green	- SLD sensor slowdown stop

(4) Error stop factor status

+EL	—EL	ALM
-----	-----	-----

Туре	Color	Description
+EL	Red	Emergency stop by limit sensor +EL.
-EL Red		Emergency stop by limit sensor -EL.
+SLD	Red	Emergency stop by limit sensor ALM.

2-6 About parameter

The parameters of R0 to 8 are indefinite when the power-on reset of X7023A is performed. When the application is started, it is displayed in brown characters. When set, it becomes black characters. An error will occur if the drive is started when the characters are brown.

The comparator register (CMP) is initialized to 0 during power-on reset of the X7023A. It is always displayed in black characters.

Note

When the application is restarted without turning off the power, the X7023A retains the previous values of R0 to R8 and CMP. When the reset (RST) button of SW3 is pressed, R0 to R8 become indefinite values.

2-6-1 Parameter input

Move the cursor to the text box for the parameter you want to set. Back space key and 0 to 9 can be entered. In addition, depending on the parameters, - key can also be entered.

When you enter the Enter key rewriting of the parameters it is done.

When the cursor moves from the text box being edited, the display returns to the currently set value.

2-6-2 error indication

If the setting is blank or outside the parameter setting range, it will be displayed in the message window.

Error #1 R0 The format of the input string is incorrect.	~
Error #1 R0 Setting range 1 to 4,096	
	Y

Symbol	Parameter register type	Setting range	
Ro	Frequency multiplication ratio setting register	1~4,096	
R_1	Output pulse count setting register	0~16,777,215	
р	Deceleration start point setting	0~16777,215	Manual setting mode
\mathbf{K}_2	register	-8,388,608~8,388,607	Offset setting mode
D		1~16,383	Linear acceleration/deceleration mode or deceleration start point manual setting mode
\mathbf{R}_3	Startup frequency setting register	1~10,000	S-shaped acceleration/deceleration mode or deceleration start point automatic calculation mode
D	Maximum frequency setting	1~16,383	Linear acceleration/deceleration mode or deceleration start point manual setting mode
\mathbf{R}_4	register	1~10,000	S-shaped acceleration/deceleration mode or deceleration start point automatic calculation mode
R_5	Acceleration rate setting register	1~16,383	
\mathbf{R}_{6}	Deceleration rate setting register	1~16,383	
R_7	S-shaped acceleration/deceleration section setting register 1~8,191		
R ₈	Linear interpolation base setting register 1~16,777,215		
CMD	Commentaria and intera	0~16,777,215	Absolute value comparison
CMP	Comparator register	-8,388,608~8,388,607	2's complement comparison

2-6-3 Parameter register type and setting range

2-6-4 Precautions for parameter setting

1) R5, R6

In the deceleration start point automatic calculation mode, set the same setting value.

② R7

The set value of register R_7 should be no more than $(R_4-R_3)/2$.

 $\textcircled{3} R_8$

Set $R1 \le R8$. Make it greater than or equal to the setting value of the maximum movement axis for linear interpolation.

2-7 About drive mode

Axis #1 operation control mode	Axis #2 operation control mode
#1 Drive mode	#2 Drive mode
Sync control Linear acc/dec 🗸 🗸	Sync control Linear acc/dec 🗸
Interpolation Auto. calc.	Interpolation Auto. calc. 🗸 🗸
Index drive 🗸	Index drive 🗸
+ Direction V 00 Hex	+ Direction V 00 Hex
Axis #1 drive command	Axis #2 drive command

2-7-1 Operation control mode

The state set in the operation control mode of the mode setting is displayed in the drive mode of this main screen. The operation control mode can be changed even in this drive mode.

- Sync start control
 Sync control
 When checked, sync start control will be applied.
- Interpolation control
 Interpolation
 When checked, interpolation control is applied.
- ③ Acceleration / deceleration shape

(4) Deceleration start point

Select from the pull-down menu.

2-7-2 Command settings

It can be displayed or entered in hexadecimal. Back space key, the numbers $0 \sim 9$, A \sim F, the letters of a \sim f you can enter. When you enter the Enter key type of command is determined.

For drive commands, the command type and drive direction text will change.

The interrupt flag reset, OUT0-7 general purpose output, and SON and CLR bit operations are performed immediately.

(4) Command error

If there is no instruction code is an error displayed in the message window.

2-8 About drive operation buttons

2-8-1 Start button

The function is switched as follows.

1 Start

Click the start button to issue the settings and instruction code to the X7023A in the following order.

- 1. Operation control mode setting value
- 2. Register R_1 setting value
- 3. Register R_8 setting value when the interpolation mode
- 4. Instruction code

For asynchronous control, the drive or timer starts. The button will display a stop.

In the case of synchronization control, it waits for the synchronization start button to be clicked. The button will display standby.

② Standby

Drive or timer when you click the button of synchronous start will start. Button will be the display of the stop.

3 Stop

It issued the instruction code of the immediate stop (30h), and then immediately stopped. When stopped, the button will display a reset.

④ Reset

The operation completion flag reset (A0h) instruction code is issued. Register R₁ setting value is the value of counter C. The button will display the start.

2-8-2 Constant speed button

① Constant speed

A constant speed (34h) instruction code is issued and fixed at the current speed. The button will display the constant speed release.

② Constant speed release

Issued the instruction code of the constant speed release (35h), and acceleration and deceleration resumes. The button will be the display of constant speed.

2-8-3 Deceleration button

① Decelerate

It issued the instruction code of deceleration (32h), to start the deceleration. The button will display the release deceleration.

② Release deceleration

The deceleration release (33h) instruction code is issued to release the deceleration. The button will display deceleration.

2-8-4 Deceleration stop button

By issuing the instruction code of deceleration stop (31h), and the deceleration stop.

2-8-5 Synchronous start button

Drive or timer the axis of the standby display in the synchronization control starts.

2-8-6 Emergency stop button

All axes will stop immediately.

2-9 About counter display

2-9-1 Counter A, B

The display format of counters A and B changes depending on the initial settings of counters A and B.

	Initi	al setting of counter A, B	
bit5	Bit6	Setting	Display format
0	0	24bit、2's complement	-8,388,608~8,388,607
0	1	24bit, Absolute value	0~16,777,215
1	0	32 bit, 2's complement	$-2,147,483,648 \sim 2,147,483,647$
1	1	32bit、Absolute value	0~4,294,967,295

2-9-2 Counter C

Counter C is changed to the value of R1 at the same time when the R1 parameter is rewritten.

Also, when the operation completion flag reset (A0h) instruction code is executed, the value of counter C is reflected in the R1 parameter.

2-9-3 Counter D

Display of counter D will vary according to the setting of the deceleration start point control code of the operation control mode.

Deceleration start point control codes			
Code2	Code1	Setting	Display format
0	0	Automatic calculation mode	0~16,777,215
0	1	Offset setting mode	-8,388,608~8,388,607
1	0	Manual setting mode	R ₂ register setting value
1	1	No deceleration mode	0~16,777,215

Counter D is changed to the value of R2 at the same time as the R2 parameter is rewritten.

When automatic calculation is set, 0 is cleared at the start of driving.

2-9-4 Counter F

Displays the value of the frequency counter F.

2-9-5 Pulse rate (pulses per second)

Displays the output pulse rate [pps].

Pulse rate = $300 \times F$ / R_0 [pps]

When R0> 300, the display is in 0.1 units.

2-10 About counter operation and batch setting of general-purpose output

Batch setting input text for general-purpose output

You can clear and preset axis #2 counter.

2-10-1 Clear the counter

2-10-2 Counter preset

① Input preset values

Move the cursor to the text box where you want to enter the preset values.

You can enter the Back space key and numbers from 0 to 9. Depending on the initial settings of counters A and B, you can also enter the -key.

Press Enter to preset the counter.

When the cursor moves from the text box being edited, the display becomes 0.

② Range of preset values

Initial setting of counter A, B			Cotting a second	
bit5	Bit6	Setting	Setting range	
0	0	24bit、2's complement	-8,388,608~8,388,607	
0	1	24bit, Absolute value	0~16,777,215	
1	0	32bit、2's complement	$-2,147,483,648 \sim 2,147,483,647$	
1	1	32bit, Absolute value	0~4,294,967,295	

2-10-3 General-purpose output batch setting (hexadecimal)

Move the cursor in the text box of the batch setting. Back space key, the numbers $0 \sim 9$, A $\sim F$, the letters of a $\sim f$ you can enter. When you enter the Enter key general-purpose output of 8bit is batch setting. When the cursor is moved from the text box will display the current state of the general-purpose output in hexadecimal.

2-11 About main status and output operation

Axis #1 operating status

2-11-1 Operating status

CLR	INT	DONE	ERR	DOWN	UP	MOVE
-----	-----	------	-----	------	----	------

Туре	Color	Description		
MOVE	Green	Operating		
UP	Green	Accelerating		
DOWN	Green	Decelerating		
ERR	Red	Error flag is ON		
DONE	Green	Stop flag is ON		
INT	Green	Interrupt flag is ON		
CLR	Green	CLR is ON		

2-11-2 Sensor status

The real-time status is displayed.

Туре	Color	Description		
MRK	Green	MARK is ON		
EZ	Green	EZ is ON		
ORG	Green	ORG is ON		
-SLD	Green	-SLD is ON		
+SLD	Green	+SLD is ON		
-EL	Red	-EL is ON		
+EL	Red	+EL is ON		

2-11-3 Driver status

Туре	Color	Description			
INP	Green	INP is ON			
ALM	Red	ALM is ON			

2-11-4 Driver operation

You can turn it on / off by bit operation by clicking the button.

Туре	Color	Description			
SON	Blue	SON is ON			
CLR	Blue	CLR is ON			

2-11-5 General-Purpose Input Status

	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0	
Type Color			Description						
Π	N0		Gi	reen	IN0 is ON				
Π	IN1 Green		IN1 is ON						
Π	N2		Gi	reen	IN2 is ON				
I	N3		Gi	reen	IN3 is ON				
Π	N4		Gi	reen	IN4 is ON				
Π	N5		Gi	reen	IN5 is ON				
Π	N6		Gi	reen	IN6 is ON				
Π	N7		Gi	reen	IN7 is ON				

2-11-6 General-purpose output operation

OUT7 OU	T6 OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
---------	---------	------	------	------	------	------

You can turn it on / off by bit operation by clicking the button.

Туре	Color	Description		
OUT0	Blue	OUT0 is ON		
OUT1	Blue	OUT1 is ON		
OUT2	Blue	OUT2 is ON		
OUT3	Blue	OUT3 is ON		
OUT4	Blue	OUT4 is ON		
OUT5	Blue	OUT5 is ON		
OUT6	Blue	OUT6 is ON		
OUT7	Blue	OUT7 is ON		

2-11-7 Comparator status

Туре	Color	Description			
P=Q	Green	$\mathbf{P} = \mathbf{Q}$ holds.			
P>Q	Green	P>Q holds.			

3. About hardware

3-1 X7023A-EV.BOARD

3-1-1 Specifications List

Item		Specifications			
Delin	MCU	STM32F103 LQFP100			
Device	Motion control LSI	X7023A 19.6608MHz 2-axis			
Communicati	on interface	USB2.0 Compliant 12Mbps			
Program & De	ebug interface	SWD			
		Gate control/2-clock switchable.			
	Clock output	Axis #1 Line driver output			
D.'		Axis #2 Open collector output			
Driver		In each axis, 2 points. Servo ON, deviation counter reset.			
interface	Driver control output	Open collector, Photocoupler output.			
		In each axis, 2 points. Driver alarm input, Positioning end input.			
	Driver signal input	Photocoupler input.			
		In each axis, 3 points. Phase A, Phase B, Phase Z.			
Encoder interfac	ce	Axis #1 Differential (line receiver) input			
		Axis #2 Photocoupler input.			
G		In each axis, 6 points. Origin input, Mark sensor input,			
Sensor input	interface	\pm End limit inputs, \pm Slow-down inputs.			
		Power supply ON (Blue)			
		USB communication (Yellow)			
I FD diaplay		Axis #1 Driving、Axis #2 Driving (Blue)			
LED display		Axis #1 Error、Axis #2 Error (Red)			
		Axis #1 Comparator、Axis #2 Comparator (Yellow)			
		General-purpose output. 8点 (Yellow)			
		Reset (Push switch)			
Operation and	tch	General-purpose input 8点(DIP SW)			
Operation swi	liten	Axis #1 Counter reset、Axis #2 Counter reset (DIP SW)			
		External linear interpolation signal input 4 点			
	Input Power	$\rm DC5V\pm 5~\%$ $-500\rm mA~$ (Supplied from USB Vbus)			
Domon gunnlu	Internal power supply	DC3.3V \pm 1 %			
rower supply	External power input	DC12~24V (For sensors and drivers)			
	External power output	$DC5V \pm 5\%$ (MAX100mA) (For driver interface)			
Board size		120×110 (mm)			

3-1-2 Block Diagram

3-1-3 Input / output function

POUT+、POUT-

In the case of the 2-clock method, the command pulse in the CW direction is output, and in the case of the pulse / direction method, the command pulse is output. Axis #1 is a line driver output, axis #2 is an open collector output.

PDIR+、PDIR-

In the case of the 2-clock method, the command pulse in the CCW direction is output, and in the case of the pulse / direction method, the command direction is output. Axis #1 is a line driver output, axis #2 is an open collector output.

SON

It is mainly used to turn on the servo of the servo driver and turn on the excitation of the stepping motor. Open collector output. It can be used as a general-purpose output.

CLR

It is used to clear the deviation counter of the servo driver. Open collector output. It can be used as a general-purpose output.

EA、EB

Input for phase A and phase B of the incremental encoder. This is the external input of the X7023A counter. By setting the X7023A, you can select x1, x2, x4 and 2 clock inputs.

Axis #1 is the line receiver input and axis #2 is the open collector input.

\mathbf{EZ}

This is the Z-phase input of the encoder. Axis #1 is the line receiver input and axis #2 is the open collector input.

ALM

This is the alarm input for the motor driver. It will stop immediately when it becomes active.

INP

This is the servo driver in-position input (positioning completed).

MARK

This is the sensor positioning input. It is used when positioning from the sensor position. When other than the sensor positioning operation, it can be used as general purpose input.

ORG

Origin sensor input. It is used when returning to the origin. When other than the origin return operation, it can be used as general purpose input. It can be used as an interrupt input.

SLD+

It is a slowdown input in the + direction. By setting the X7023A, you can select slow down or slow down stop.

SLD-

It is a slowdown input in the - direction. By setting the X7023A, you can select slow down or slow down stop.

EL+

It is an end limit input in the + direction. It will stop immediately when it becomes active.

EL-

It is an end limit input in the - direction. It will stop immediately when it becomes active.

CLRA

When it turns ON, counter A is cleared to 0. By setting the X7023A, you can select the level operation or edge operation.

CP0-3

You can test when performing linear interpolation using multiple X7000 series.

IN0-7

You can test the general-purpose input IN0-7. IN0 can be used as an interrupt input.

OT0-7

You can monitor the general-purpose output OUT0-7.

MOV

You can monitor the signal MOVE during pulse output.

ERR

You can monitor the error stop signal ERROR.

CMP

You can monitor the output of the comparator. By setting the X7023A, you can switch of = or >.

COM

Lights when the board and PC are communicating with each other via USB (CN3) connection.

PWR

Lights when 5V power is supplied from the USB (CN3) Vbus.

3-1-4 Connector signal arrangement / function

(1) Axis #1 sensor driver interface (CN1)

Connector XG4C-2631 (OMRON)

No.	Signal	Description	No.	Signal	Description
1	#1POUT+	Axis #1 CW / Pulse output +	14	#1EB-	Axis #1 encoder B-phase input -
2	#1POUT-	Axis #1 CW / Pulse output -	15	#1EZ+	Axis #1 encoder Z-phase input +
3	#1PDIR+	Axis #1 CCW / Direction output +	16	#1EZ-	Axis #1 encoder Z-phase input -
4	#1PDIR-	Axis #1 CCW / Direction output -	17	0V	External power supply 0V
5	#1SON	Axis #1 servo ON output	18	0V	External power supply 0V
C	#1CL D	Axis #1 deviation counter clear	10	#1MADZ	Axis #1 sensor positioning input
6	#IULK	output 19 #1M		#1MARK	
7	+5V_EX	+ 5V output	20	#1ORG	Axis #1 origin sensor input
0	OV	External power supply 0V	01	#1CL D	Axis #1 + direction slowdown
0	ŰV		21	#15LD+	limit input
0	#1 AT M	Axis #1 driver alarm input	00	#101 D	Axis #1 - direction slowdown limit
9	#IALM		22	#15LD	input
10	#1 IND	Axis #1 Positioning Complete	<u></u>	#1171.4	Axis #1 + direction limit input
10	#11NP	Input	23	#1EL+	
11	#1EA+	Axis #1 encoder A-phase input +	24	#1EL-	Axis #1 - direction limit input
12	#1EA-	Axis #1 encoder A-phase input -	25	0V	External power supply 0V
13	#1EB+	Axis #1 encoder B-phase input +	26	0V	External power supply 0V

No.	Signal	Description	No.	Signal	Description
1	+5V_EX	+ 5V output	14	#2EB-	Axis #2 encoder B-phase input -
2	#2POUT-	Axis #2 CW / Pulse output -	15	#2EZ+	Axis #2 encoder Z-phase input +
3	+5V_EX	+ 5V output	16	#2EZ-	Axis #2 encoder Z-phase input -
4	#2PDIR-	Axis #2 CCW / Direction output -	17	0V	External power supply 0V
5	#2SON	Axis #2 servo ON output	18	0V	External power supply 0V
6	#2CLR	Axis #2 deviation counter clear output	19	#2MARK	Axis #2 sensor positioning input
7	+5V_EX	+ 5V output	20	#2ORG	Axis #2 origin sensor input
8	0V	External power supply 0V	21	#2SLD+	Axis #2 + direction slowdown limit input
9	#2ALM	Axis #2 driver alarm input	22	#2SLD-	Axis #2 - direction slowdown limit input
10	#2INP	Axis #2 Positioning Complete Input	23	#2EL+	Axis #2 + direction limit input
11	#2EA+	Axis #2 encoder A-phase input +	24	#2EL-	Axis #1 - direction limit input
12	#2EA-	Axis #2 encoder A-phase input -	25	0V	External power supply 0V
13	#2EB+	Axis #2 encoder B-phase input +	26	0V	External power supply 0V

② Axis #2 sensor driver interface (CN2)

Connector XG4C-2631 (OMRON)

③ USB I/F (CN3)

Connector UB-M5BR-DMP14-4S (JST)

No.	Signal	Description
1	Vbus	+5V
2	D-	-Data
3	$\mathrm{D}+$	+Data
4	ID	NC
5	GND	GND

④ SWD I/F (CN4)

Connector XJ8B0611 (OMRON) No. Signal Description T_VCC 1 Target reference voltage $\mathbf{2}$ T_SWCLK SWD clock signal GND GND 3 T_SWIO IO data pin 4 $\mathbf{5}$ T_NRST Target reset signal T_SWO Trace port 6

(5) External power input (CN5)

Connector B2B-XH-A(LF)(SN) (JST)

No.	Signal	Description
1	+12~24V	Connect a 12 to 24V DC
2	0V	power supply.

3-1-5 LED display and operation switch

(1) LED display	(1)	LED	disp	lav
-----------------	-----	-----	------	-----

N	<u>Cianal</u>	Description		
INO.	Signai	Extinguishing light	Lighting	
1	ОТО	OUT0 is OFF	OUT0 is ON	
2	OT1	OUT1 is OFF	OUT1 is ON	
3	OT2	OUT2 is OFF	OUT2 is ON	
4	OT3	OUT3 is OFF	OUT3 is ON	
5	OT4	OUT4 is OFF	OUT4 is ON	
6	OT5	OUT5 is OFF	OUT5 is ON	
7	OT6	OUT6 is OFF	OUT6 is ON	
8	OT7	OUT7 is OFF	OUT7 is ON	
9	PWR	Vbus power OFF	Vbus power ON	
10	COM	USB communication OFF	USB communication ON	
11	MOV1	Axis #1 stopped	Axis #1 pulse output	
12	ERR1	Axis #1 is not an error stop	Axis #1 is stopping error	
10	CMD1	Axis #1 comparator condition not	Axis #1 comparator condition	
13	CMP1	satisfied	satisfied	
14	MOV2	Axis #2 stopped	Axis #2 pulse output	
15	ERR2	Axis #2 is not an error stop	Axis #2 is stopping error	
10	CMD9	Axis #2 comparator condition not	Axis #2 comparator condition	
10	CMP2	satisfied	satisfied	

Na	Cianal	Description		
NO. Signal		OFF	ON	
1	IN7	Turn off general-purpose input IN7	Turn on general-purpose input IN7	
2	IN6	Turn off general-purpose input IN6	Turn on general-purpose input IN6	
3	IN5	Turn off general-purpose input IN5	Turn on general-purpose input IN5	
4	IN4	Turn off general-purpose input IN4	Turn on general-purpose input IN4	
5	IN3	Turn off general-purpose input IN3	Turn on general-purpose input IN3	
6	IN2	Turn off general-purpose input IN2	Turn on general-purpose input IN2	
7	IN1	Turn off general-purpose input IN1	Turn on general-purpose input IN1	
8	IN0	Turn off general-purpose input IN0	Turn on general-purpose input IN0	

② General-purpose input operation switch (SW1)

(3) CLRA, CP0 ~ 3 operation switch (SW2)

N.	Signal	Description		
NO.	Signal	OFF	ON	
1	CDa	Turn off the linear interpolation	Turn on the linear interpolation	
T	CP3	input CP3	input CP3	
9	CD9	Turn off the linear interpolation	Turn on the linear interpolation	
2	CP2	input CP2	input CP2	
9	CP1	Turn off the linear interpolation	Turn on the linear interpolation	
Э	ULI	input CP1	input CP1	
4	CDO	Turn off the linear interpolation	Turn on the linear interpolation	
4	CP0	input CP0	input CP0	
5	CLRA2	Turn off the Axis #2 CLRA input	Turn on the Axis #2 CLRA input	
6	CLRA1	Turn off the Axis #1 CLRA input	Turn on the Axis #1 CLRA input	

④ Reset switch (SW3)

Resets the STM3232F103, X7023A and USB line when pressed.

3-1-6 I / O circuit and external connection

② Axis #2 POUT、PDIR

5 Axis #2 EA, EB, EZ

6 ALM, INP, MARK, ORG, SLD+, SLD-, EL+, EL-

3-1-8 BOM <u>X7023A-EV-BOM.pdf</u>

3-2 ExIO-01

3-2-1 Connector signal arrangement / function

Connection plug (CN1)

No.	Signal	Description	No.	Signal	Description	
1	POUT+	CW / pulse input +	14	EB-	Encoder B-phase output -	
2	POUT-	CW / pulse input -	15	EZ+	Encoder Z-phase output +	
3	PDIR+	CCW / Direction input +	16	EZ-	Encoder Z-phase output -	
4	PDIR-	CCW / Direction input -	17	0V	Common	
5	SON	Servo on input	18	0V	Common	
6	CLR	Deviation counter clear input	19	MARK	Sensor positioning output	
7	+5V_EX	+ 5V input	20	ORG	Origin sensor output	
8	0V	Common	21	SLD+	+ direction slowdown output	
9	ALM	Alarm output	22	SLD-	- direction slowdown output	
10	INP	Positioning Complete output	23	EL+	+ direction limit output	
11	EA+	Encoder A-phase output +	24	EL-	- direction limit output	
12	EA-	Encoder A-phase output -	25	0V	Common	
13	EB+	Encoder B-phase output +	26	0V	Common	

Connector XG4H-2631 (OMRON)

3-2-2 LED display and operation switch

\bigcirc	LED display				
No	Signal	Description			
No.	Signal	Extinguishing light	Lighting		
1	CLR	CLR is OFF	CLR is ON		
2	SON	SON is OFF	SON is ON		

② Sensor operation switch (SW1)

No. Signal		Description		
		OFF	ON	
1	EL-	Turn off -direction End limit output	Turn on -direction End limit output	
2	EL+	Turn off +direction End limit output	Turn on +direction End limit output	
3	SD-	Turn off -directional slowdown output	Turn on -directional slowdown output	
4	SD+	Turn off +directional slowdown output	Turn on +directional slowdown output	
5	ORG	Turn off the origin sensor output	Turn on the origin sensor output	
6	MARK	Turn off the sensor positioning output	Turn on the sensor positioning output	
7	INP	Turn off in-position output	Turn on in-position output	
8	ALM	Turn off alarm output	Turn on alarm output	
9	\mathbf{EZ}	Turn off encoder Z-phase output	Turn on encoder Z-phase output	
10	EZSEL	Encoder Z phase is an open collector	Encoder Z-phase output is differential	

3-2-3 Check pin (T1~5)

No.	Signal	Description
1	T1	0V
2	T2	PDIR- and ExEB- (loopback connected)
3	T3	PDIR + and ExEB + (loopback connected)
4	T4	POUT- and ExEA- (loopback connected)
5	T5	POUT + and ExEA + (loopback connected)

3-2-4 circuit diagram

ExIO-01-Circuit.pdf

3-2-5 BOM

EXIO-01-BOM200729.pdf

4. About firmware

4-1 STM32 development environment

4-1-1 Development environment

Development machine

OS

Windows10 64bit Japanese version

IDE

SW4STM32

Setup file : install_sw4stm32_win_64bits-v2.8.zip

Configuration tool

STM32CubeMX

Setup file : en.SetupSTM32CubeMX-5.1.0-RC6.Zip

Debugger

ST-LIMK/V3

4-1-2 Development environment setup procedure

1 Download and install the SW4STM32 setup file from STMicroelectronics' HP.

② Download and install the STM32CubeMX setup file from STMicroelectronics' HP.

③ Connect ST-LINK / V3 to the development machine via USB and install the driver if necessary.

Please refer to the STMicroelectronics documentation for settings and usage of each tool.

4-2 Setting

X7023A_EV-Configuration.pdf

Revision history

Year and month	Description	Ver.
2021/04/15	Preliminary version	Ver.0.0.0
2021/07/16	First edition	Ver.1.0.0