

支持USB 接口

X7000A 评估套件

X7000 SERIES EV.KIT

用户手册

Ver. 1. 0. 0

http://www.kyopal.co.jp

MNLX7000A.EV_j_ver.1.0.0_210719

		目录	
1	. 概要		L
	1-1	前言1	L
	1-2	结构1	L
	1-3	结构说明	2
	1-4	X7023A-EV. BOARD 的开关与 LED 的说明	2
	1-5	ExIO-01的开关与 LED 的说明	5
2	. 关于/	应用	7
	2-1	应用的结构	7
	2-2	应用的启动	7
	2-3	主画面的说明	3
	2-4	语言切换)
	2-5	各类设置与子状态的显示按钮)
	2-5-1	初始设置的画面与设置方法10)
	2 - 5 - 2	模式设置的画面与设置方法16	3
	2 - 5 - 3	中断屏蔽设置的画面与设置方法20)
	2-5-4	中断标志寄存器与重置25	3
	$2 \cdot 5 \cdot 5$	子状态的显示	3
	2-6	关于参数	3
	2-6-1	参数的输入28	3
	2-6-2	错误显示	3
	2-6-3	参数的种类与设置范围	9
	2-6-4	参数设置的注意点)
	2-7	关于驱动模式)
	2-7-1	工作控制模式)
	2-7-2	命令的设置	L
	2-8	关于驱动操作按钮	2
	2-8-1	开始按钮	2
	2-8-2	定速按钮	3
	2-8-3	减速按钮	3
	2-8-4	减速停止按钮	3
	2-8-5	同步开始按钮	3
	2-8-6	紧急停止按钮	3
	2-9	关于计数器显示	1
	2-9-1	计数器A、B	1
	2 - 9 - 2	计数器C34	1

	2 - 9 - 3	计数器D	35
	2-9-4	计数器F	35
	2 - 9 - 5	脉冲率(pulses per second)	35
	2-10	关于计数器的操作与通用输出的批量设置	36
	2-10-1	计数器的清除	36
	2-10-2	计数器的预设	36
	2-10-3	通用输出批量设置(16进制数)	37
	2-11	关于主状态与输出操作	38
	2-11-1	工作状态	39
	2-11-2	传感器状态	39
	2-11-3	驱动器状态	39
	2-11-4	驱动器操作	40
	2-11-5	通用输入状态	40
	2-11-6	通用输出操作	41
	2-11-7	比较器状态	41
3	. 关于	硬件	42
	3-1	X7023A-EV.BOARD	42
	3-1-1	规格	42
	3-1-2	方框图	43
	3-1-3	输出输入功能	44
	3-1-4	连接器信号配置及功能	46
	3-1-5	LED 显示与操作开关	48
	3-1-6	关于输入输出电路与外部连接	50
	3-1-7	电路图	51
	3-1-8	零件表	51
	3-2	ExIO-01	52
	3-2-1	连接器信号配置及功能	52
	3-2-2	LED 显示与操作开关	53
	3-2-3	检测针(T1~5)	53
	3-2-4	电路图	53
	3-2-5	零件表	53
4	. 关于	固件	54
	4-1	STM32开发环境	54
	4-1-1	开发环境	54
	4-1-2	开发环境安装步骤	54
	4-2	设置	54
			_

更新记录		•••		•••	••	•••	••		••	•••	•			•	•••	••		•	••		• •	• •			•••	•	• •						•••	• •	••	••	•	•••		5	5
------	--	-----	--	-----	----	-----	----	--	----	-----	---	--	--	---	-----	----	--	---	----	--	-----	-----	--	--	-----	---	-----	--	--	--	--	--	-----	-----	----	----	---	-----	--	---	---

1. 概要

1-1 前言

X7000 SERIES EV.KIT 是用于评估运动控制LSI (X7083A / X7043A / X7023A) 性能的 套件。本套件使用了X7023A (2轴)。X7000 系列中,软件可兼容,且特性相同,因此在 X7083A (8轴)、X7043A (4轴)中也可用于评估。

本套件中, CPU 使用了 ARM (STM32F103VET6)。通过6PIN 的调试接口可改写及调试 自己创建的固件。

外部输入输出拥有CN1 与 CN2两个轴的传感器驱动器I/F。CN1 为差分 I/F, CN2 为集 电极开路I/F。

X7023A-EV.BOARD 的CN1 与 CN2 连接ExIO-01后,即便没有实机 也可评估X7000 系列以及调试软件。

1-2 结构

1-3 结构说明

连接器	说 明
CN1	连接差分输出输入的马达驱动器与集电极开路传感器IO。
UNI	连接ExIO-01 后即便没有实机也可进行评估与软件调试。
CNIO	连接集电极开路的马达驱动器以及传感器IO。连接ExIO-01
CNZ	后即便没有实机也可进行评估与软件调试。
	通过USB(AminiB)连接PC与X7023A-EV.BOARD。启动本套件的Windows应用
CN3	(X7023-Conttroller)后可确认 X7023A 的基本功能与使用方法。
	本基板的内部电路使用 USB 电源。
CN14	Cortex-M 的调试与编程用 SWD接口。连接ST-LINK。
UN4	使用STMicroelectronics的开发板也可进行编程。
CN5	传感器与驱动器用外部电源输入。输入DC12~24V。

1-4 X7023A-EV.BOARD 的开关与 LED 的说明

① SW1

No.	信号名 称	说明
1	IN7	连接X7023A 的 IN0 (LSB) 至 IN7 (MSB) 的8位并行输入。IN0 可通过从
2	IN6	OFF 至ON 的变化进行中断。
3	IN5	
4	IN4	
5	IN3	
6	IN2	
7	IN1	
8	IN0	

2 SW2

No.	信号名 称	说明
1	CP3	连接X7023A的 CP3。直线插补时设为 ON 后会减速。
2	CP2	连接X7023A的 CP2。直线插补时设为 ON 后会变为定速。
3	CP1	连接X7023A的 CP1。直线插补时设为 ON 后会减速停止。
4	CP0	连接X7023A的 CP0直线插补时设为 ON 后会立即停止。
5	CLRA2	设为ON 后#2 轴计数器A 将清除为 0。
6	CLRA1	设为ON 后#1 轴计数器A 将清除为 0。

3 SW3

重置信号。按下按钮后, CPU 与X7023A 将会被重置。

④ LED 1-8

No.	信号名 称	说明
1	ОТО	通用输出 OUT0 变为 ON 时亮灯。
2	OT1	通用输出 OUT1 变为 ON 时亮灯。
3	OT2	通用输出 OUT2 变为 ON 时亮灯。
4	OT3	通用输出 OUT3 变为 ON 时亮灯。
5	OT4	通用输出 OUT4 变为 ON 时亮灯。
6	OT5	通用输出 OUT5 变为 ON 时亮灯。
7	OT6	通用输出 OUT6 变为 ON 时亮灯。
8	OT7	通用输出 OUT7 变为 ON 时亮灯。

⑤ LED 9-16

No.	信号名 称	说明
9	PWR	PC 与 USB 连接后将会接通电源并亮灯。
10	COM	PC 与 USB 通信后将会亮灯。
11	MOV1	#1 轴驱动后将会亮灯。
12	ERR1	#1 轴错误停止时将会亮灯。
13	CMP1	#1 轴的比较器条件成立时将会亮灯。
14	MOV2	#2 轴驱动后将会亮灯。
15	ERR2	#2 轴错误停止时将会亮灯。
16	CMP2	#2 轴的比较器条件成立时将会亮灯。

1-5 ExIO-01 的开关与 LED 的说明

① SW1

No.	信号名称	说
1	EL-	可设置传感器输入-EL的 ON/OFF。
2	EL+	可设置传感器输入+EL的 ON/OFF。
3	SD-	可设置传感器输入-SLD 的 ON/OFF。
4	SD+	可设置传感器输入+SLD 的 ON/OFF。
5	ORG	可设置传感器输入 ORG 的 ON/OFF。
6	MARK	可设置传感器输入 MARK 的 ON/OFF。
7	INP	可设置传感器输入 INP 的 ON/OFF。
8	ALM	可设置传感器输入 ALM 的 ON/OFF。
9	EZ	可设置传感器输入EZ的 ON/OFF。
10	EZSEL	将ExIO-1 连接 CN1 时设为 ON,连接 CN2 时设为 OFF。

② LED1,2

No.	信号名 称	说明
1	CLR	CLR 输出为 ON 时亮灯。
2	SON	SON 输出为 ON 时亮灯。

3 T1-5

No.	信号名 称	说明
1	T1	连接至与CN5 连接的 DC12~24V 电源的 0V。
2	T2	PDIR-与 EB-进行回路连接。用于波形测量的检测针。
3	Т3	PDIR+与 EB+进行回路连接。用于波形测量的检测针。
4	T4	POUT-与 EA-进行回路连接。用于波形测量的检测针。
5	T5	POUT+与 EA+进行回路连接。用于波形测量的检测针。

2. 关于应用

2-1 应用的结构

应用的安装文件夹

- X7023-Controller.exe	应用的启动文件
- X7023-Controller.exe.Config	应用的结构文件
- Languages 文件夹	
— Chinese.xml	中文辞典文件
– English.xml	英语辞典文件
└ Japanese.xml	日语辞典文件

2-2 应用的启动

连接 X7023A-EV.BOARD 的 CN3 与 PC 的 USB 端口后 LED9(PWR)将会亮灯。双 击X7023-Controller.exe 后将会显示主画面。

计数器									参数			Language
			#1				#2			#1	#2	中文 ~
А				C				0	RO	4096	1116	设置
в				C)			0	R1 R2	0	0	初始设置
с				C)			0	R3	2	4100	模式设置
				-				0	R4 R5	0	2052	中新屈蔽
D					,			U	R6	256	2080	TWINTIN
F				C)			0	R7	4288	1152	中断标志
PPS				0.0)			0.0	R8 CMP	12599698 0	<u>557073</u> 0	状态
工作状态	t.							通用输出	#1 计数器操作	۴.	#2 计数器排	操作
#1	CLR	INT	DONE	ERR	DOWN	UP	MOVE	批量设置	清除	预设	清除	预设
#2	CLR	INT	DONE	ERR	DOWN	UP	MOVE	00 Hex	A		0 A	0
传感器壮	犬态								В		0 B	0
#1	+EL	-EL	+SLD	-SLD	ORG	EZ	MRK	#1 驱动模式			2 驱动模式	
#2	+EL	-EL	+SLD	-SLD	ORG	EZ	MRK	□同步控制	直线加减速	~ []同步控制 直	线加减速 ~
驱动器					比较器	¥		□ 插补控制	自动运算	~ [1 插补控制 自	动运算 ~
#1	CLR	SON	ALM	INP	#1	P=Q	P>Q	索引驱动		~	索引驱动	~
#2	CLR	SON	ALM	INP	#2	P≕Q	P>Q	+方向	~	00 Hex	+方向 ~	00 He
通用输)	、输出											
IN7	IN6	IN5	IN4	IN3	IN2	IN1	INO	#1 定速	#1 减速	#1 减速停	止 #1 开始	同步开始
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUTO					
onnected	to COM3					0.24	0	*** 史涛	#0.\rfl\th	#0 \d:古/白	ub #0 Π #4	紧急停止

2-5 各类设置与子状态的显示按钮

点击初始设置按钮后将显示初始设置的画面。上电复位后,至少需 要设置一次初始设置寄存器。

点击模式设置按钮后将显示控制模式设置的画面。上电复位后,在 驱动前至少需要设置一次控制模式。

点击中断屏蔽按钮后将显示中断屏蔽设置画面。

点击中断标志按钮后将显示中断标志状态画面。该画面可重置中断标 志。

点击状态按钮后将显示子状态的显示画面。在子状态下可确认停止因 素以及比较器的状态。

① 脉冲输出的初始设置寄存器

用ExIO-01 进行回路计数时设为2时钟方式。

② 编码器输出的初始设置寄存器

③ 计数器A初始设置寄存器

可选择绝对值计数、二补数计数、 24Bit 模式、32Bit 模式。设置将反映在主画面 的计数值显示以及计数操作的输入中。 计数对象可选择内部发送的指令脉冲或 编码器的反馈脉冲。选择偏差计数器时 勾选Bit0,2,3。

④ 计数器B初始设置寄存器

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 5	i8h							
计数器B初始设置寄存器									
OFF:0	ON:1	#1 #2							
禁用内部发送脉冲计数	启用内部发送脉冲计数	🗌 🗌 Bit0							
禁用编码器计数	启用编码器计数	🔲 🗌 Bit 1							
未定义(设置为0)		Bit2							
编码器输入正计数	编码器输入反计数	🗌 🗌 Bit3							
未定义(设置为0)		Bit4							
-8,388,608~8,388,607的计数	0~16,777,215的计数	🗌 🗌 Bit5							
24Bit模式	32Bit模式	🗌 🗌 Bit6							
未定义(设置为0)		Bit7							

与计数器A初始设置寄存器相同。

⑤ 输入的初始设置寄存器

50h	51h	52h	53h	54h	55h 3	55h II	_56h	57h	58h	
输入的	的初始设	置寄存	器							
	c)FF:0						0 N :1	#1	#2
+SLD、	-SLD为	」减速输入	λ		+SLD、	-SLD为减	速停止斩	入		Bit0
+SLD、	-SLD为	小平工作	乍输入		+SLD、	-SLD为边	缘工作辅	入		🔲 Bit 1
ORG为	」低灵敏)	度输入			ORG为	高灵敏度辅	入			🔲 Bit2
MARK	为低灵每	收度输入			MARK	卜高灵 敏度	输入			🗌 Bit3
CLRA	为水平清	除输入			CLRA为	」边缘清除	諭入			🔲 Bit4
未定义	(设置)	为0)								Bit5
未定义	(设置)	为0)								Bit6
未定义	(设置)	为0)								Bit7

⑥ 输入逻辑的初始设置寄存器 I

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 58	ĥ
输入逻辑的初始设置寄存器I		
OFF:0	ON:1	#1 #2
+EL为负逻辑输入	+EL为正逻辑输入	Bit0
-EL为负逻辑输入	-EL为正逻辑输入	🔲 🗌 Bit 1
ALM为负逻辑输入	ALM为正逻辑输入	🔲 🗌 Bit2
未定义(设置为0)		Bit3
未定义(设置为0)		Bit4
未定义(设置为0)		Bit5
未定义(设置为0)		Bit6
未定义(设置为0)		Bit7

$\overline{7}$	输入逻辑的初始设置寄存器 II
Ċ	

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 58	h
输入逻辑的初始设置寄存器II		
OFF:0	ON:1	#1 #2
ORG为负逻辑输入	ORG为正逻辑输入	🔲 🗌 Bit0
EZ为负逻辑	EZ为正逻辑	🔲 🗌 Bit 1
+SLD为负逻辑输入	+SLD为正逻辑输入	🗌 🗌 Bit2
-SLD为负逻辑输入	-SLD为正逻辑输入	🔲 🗌 Bit3
INP为负逻辑输入	INP为正逻辑输入	🔲 🗌 Bit4
MARK为负逻辑输入	MARK为正逻辑输入	🔲 🗌 Bit5
未定义(设置为0)		Bit6
未定义(设置为0)]	Bit7

⑧ 输入滤波器的初始设置寄存器(F)

文本框中以 1~256为范围进行输入。输入Enter 键后 将会以16 进制数反映各初始设置寄存器的值。

⑨ 输出的初始设置寄存器

50h 51h 52h 53h 54h	55h I 55h I 56h 57h 5	3h
输出的初始设置寄存器		
OFF:0	ON:1	#1 #2
CLR为1次输出	CLR为通用输出	Bit0
未定义(设置为0)		Bit 1
未定义(设置为0)		Bit2
未定义(设置为0)		Bit3
未定义(设置为0)		Bit4
未定义(设置为0)		Bit5
未定义(设置为0)		Bit6
未定义(设置为0)		Bit7

⑩ 输出逻辑的初始设置寄存器

50h	51h	52h	53h	54h	55h I	55h II	56h	57h	58h		
输出	逻辑的初]始设置	寄存器								
		OFF:0				ON:	1			#1	#2
POL	JT为负逻	躍輸出			POUT	可正逻辑输	i出				Bit0
PDI	R为负逻	辑输出			PDIR为	正逻辑输出	Ц				Bit 1
CLR	为负逻辑	輸出			CLR为I	E逻辑输出	1				Bit2
INT为负逻辑输出					INT为正逻辑输出 Bi						Bit3
ERR	OR为负	逻辑输出	3		ERROR	为正逻辑	渝出				Bit4
MO	/E为负逻	2辑输出	输入		MOVE	可正逻辑输	出				Bit5
未定	义(设置	呈为0)									Bit6
未定	义(设置	【为0)									Bit7

Bit3 的 INT 逻辑固定为负逻

辑。

通过切换5个标签可变更各模式寄存器。

17

① 工作控制模式设置寄存器

工作控制模式的设置将反映在主画面的驱动模式中。

② 计数器A的控制模式设置寄存器

③ 计数器B的控制模式设置寄存器

④ CLR输出控制模式设置寄存器

60h 61h 62h 63h 64h		
CLR输出控制模式寄存器		
OFF:0	ON:1	#1 #2
错误停止时不自动输出CLR	错误停止时自动输出CLR	Bit0
正常停止时不自动输出CLR	正常停止时自动输出CLR	🗌 📄 Bit 1
未定义(设置为0)		Bit2
未定义(设置为0)		Bit3
未定义(设置为0)		Bit4
未定义(设置为0)		Bit5
未定义(设置为0)		Bit6
未定义(设置为0)		Bit7

⑤ 比较器控制模式设置寄存器

比较器控制模式的变更将反映在主菜单的CMP参数设置、比较器状态显示以及基板CMP1、 2的LED上。

2-5-3 中断屏蔽设置的画面与设置方法

通过切换4 个标签可变更各中断屏蔽 寄存器。

① 脉冲输出中断屏蔽设置寄存器

70h 71h 72h 73h		
脉冲发送中断屏蔽寄存器		
OFF:0	ON:1	#1 #2
禁止正常脉冲输出完成中断	许可正常脉冲输出完成中断	🗌 🗌 Bit0
禁止错误停止中断	许可错误停止中断	🗌 🗌 Bit 1
禁止减速开始点中断	许可减速开始点中断	🔲 🗌 Bit2
禁止等速中断	许可等速中断	🗌 🗌 Bit 3
未定义(设置为0)		Bit4
禁止最大加速中断	许可最大加速中断	🔲 🔲 Bit5
未定义(设置为0)		Bit6
未定义(设置为0)		Bit7

② 计数器中断屏蔽设置寄存器

70h	71h	72h	_73h					
计数器	器中断屏	解蔽寄存	器					
		OFF:0			ON:1		#1	#2
禁止	计数器A	的进位中	中断	许可计数器	A的进位中	断		Bit0
禁止	计数器A	的借位「	中断	许可计数器	A的借位中	断		🔲 Bit 1
禁止	计数器B	的进位,	中断	 许可计数器	B的进位中	断		🔲 Bit2
禁止	计数器B	的借位「	中断	 许可计数器	B的借位中	断		🔲 Bit3
未定	义(设置	【为0)		 				Bit4
禁止	计数器C	的借位「	中断	 许可计数器	C的借位中	断		🔲 Bit5
未定	义(设置	【为0)						Bit6
未定	义(设置	【为0)						Bit7

③ 传感器中断屏蔽设置寄存器

70h 71h 72h 73h		
传感器中断屏蔽寄存器		
OFF:0	ON:1	#1 #2
禁止ORG中断	许可ORG中断	Bit0
禁止EZ中断	许可EZ中断	🔲 🗌 Bit 1
禁止IN0中断	许可IN0中断	🔲 🗌 Bit2
禁止MARK中断	许可MARK中断	🗌 🗌 Bit3
未定义(设置为0)		Bit4
未定义(设置为0)		Bit5
未定义(设置为0)		Bit6
未定义(设置为0)		Bit7

④ 比较器中断屏蔽设置寄存器

70h	71h	72h	73h				
比较器	中断屏	蔽寄存	7器				
		OFF:0			ON:1	#1	#2
禁止P	P=Q中断	б		许可P=Q中断			Bit0
禁止P	P>Q中断	б		许可P>Q中断]	🔲 Bit 1
未定义	义(设置	【为0)]	Bit2
未定义	义(设置	置为0)]	Bit3
未定义	义(设置	【为0)]	Bit4
未定义	义(设置	【为0)]	Bit5
未定义	义(设置	置为0)]	Bit6
未定义	义(设置	【为0)					Bit7

2-5-4 中断标志寄存器与重置

#1 轴脉冲发送中断标志

#2 轴比较器中断标志

① 脉冲发送中断标志

脉冲输出完成 错误	亭止	速开始点	等速	最大加速度	
种类	显示颜色		说	明	
脉冲输出完成	绿色	因脉冲输出停止而发生中断。			
错误停止	红色	因+EL、-EL、ALM 发生错误停止中断。			
减速开始点	绿色	因减速开始	点发生中断。		
等速	绿色	因等速度发生中断。			
最大加速度	绿色	因最大加速	度发生中断。		

标志为 ON时按钮显示为绿色。点击按钮后标志将会被重置。 脉冲输出完成与错误停止会通过A0h 命令进行重置,因此会同时进行重置。

② 计数器中断标志

计数器A进位	计数器A借位	计数器B进位	计数器B借位	计数器C借位
--------	--------	--------	--------	--------

种类	显示颜色	说明
计数器A进位	绿色	因计数器A进位发生中断。
计数器A借位	绿色	因计数器A借位发生中断。
计数器B进位	绿色	因计数器B进位发生中断。
计数器B借位	绿色	因计数器B借位发生中断。
计数器C借位	绿色	因计数器C借位发生中断。

标志为 ON时按钮显示为绿色。点击按钮后标志将会被重置。

③ 传感器中断标志

ORG	EZ	IN0	MARK
-----	----	-----	------

种类	显示颜色	说明
ORG	绿色	因ORG输入发生中断。
EZ	绿色	因EZ输入发生中断。
IN0	绿色	因INO输入发生中断。
MARK	绿色	因MARK输入发生中断。

原点复位驱动时 ORG 变为激活,完成减速后 EZ 变为激活时发生中断。 标志为 ON时按钮显示为绿色。点击按钮后标志将会被重置。

⑤ 比较器中断标志

种类	显示颜色	说明
P=Q	绿色	因P=Q成立发生中断。
P>Q	绿色	因P>Q成立发生中断。

标志为 ON时按钮显示为绿色。点击按钮后标志将会被重置。

① 中断状态

中断状态表示中断类别。

PULSE COUNTER	SENSOR	COMPARATOR
---------------	--------	------------

种类	显示颜色	说明
PULSE	绿色	发生脉冲发送中断。
COUNTER	绿色	发生计数器中断。
SENSOR	绿色	发生传感器中断。
COMPARATOR	绿色	发生比较器中断。

② 中断轴状态

种类	显示颜色	说明
#1	绿色	因P=Q成立发生中断。
#2	绿色	因P>Q成立发生中断。

③ 正常停止因素状态

ORG EZ +SLD -SLD

种类	显示颜色	说明
ORG	绿色	通过ORG传感器原点复位结束。
EZ	绿色	通过ORG传感器与EZ传感器原点复位结束。
+SLD	绿色	通过+SLD 传感器减速停止。
-SLD	绿色	通过-SLD 传感器减速停止。

④ 错误停止因素状态

种类	显示颜色	说明
+EL	红色	通过限位传感器+EL紧急停止
-EL	红色	通过限位传感器-EL紧急停止
ALM	红色	通过驱动器报警 ALM 紧急停止。

2-6 关于参数

R0~8 的参数在X7023A 上电复位时为不定值。启动应用时 以棕色文字显示。设置时变为黑色文字。 为棕色文字时开始驱动后将变为错误。

比较器寄存器(CMP)在X7023A上电复位时将会被初始 化为 0。 始终以黑色文字显示。

注意

在未切断电源的状态下重新启动应用时, Ro~Rs与 CMP 将会由 X7023A 保持上一次的值。 按下SW3 的重置(RST)按钮后, Ro~Rs将变为不定值。

2-6-1 参数的输入

将光标移动至设置的参数文本框上。可输入Back space 键与0~9的数字。此外,根据参数 还可输入一键。

输入Enter 键时将会改写参数。

光标从编辑中的文本框中移开后,显示将会恢复至当前设置的值。

2-6-2 错误显示

设置为空白或超出参数设置范围时,将会显示在信息窗口中。

2-6-3 参数的种类与设置范围

符号	寄存器的种类	设置范围	
Ro	频率倍率设置寄存器	1~4,096	
R1	输出脉冲数设置寄存器	0~16,777,215	
р	试速工场上仍罢灾方限	0~16777,215	手动设置
K2	碱迷开如息仅且苛仔奋	-8,388,608~8388607	偏置设置
		1.10.202	直线加减速或
R3	启动频率设置寄存器	1~16,383	手动设置
		1~10,000	S形加减速且自动运算
		1~16,383	直线加减速或
\mathbf{R}_4	最高频率设置寄存器		手动设置
		1~10,000	S形加减速且自动运算
R_5	加速率设置寄存器	1~16,383	
R6	减速率设置寄存器	1~16,383	
R7	S形加减速区间设置寄存器	1~8,191	
Rs	直线插补基数设置寄存器	1~16,777,215	
CMP	山姑鬼安方鬼	0~16,777,215	绝对值比较
CMP	L	-8,388,608~8,388,607	二补数比较

2-6-4 参数设置的注意点

1) R5, R6

减速开始点自动运算模式中设为相同的设置值。

② R7

设置为(R4-R3)÷2以下。

3 Rs

设为R1 ≤ R8 的设置。设置直线插补最大移动轴的设置值以上。

2-7-1 工作控制模式

模式设置的工作控制模式中设置的状态将显示在该主画面的驱动模式中。该驱动模式也可变更工作控制模式。

同步控制

2-8 关于驱动操作按钮

根据同步模式的设置与驱动状态将会在待机、停止、重置以及功能之间进 开始同步控制的驱动。

2-8-1 开始按钮

#1 开始		#1 待机		#1 停止		#1 重置	与功能之间进行切换。
-------	--	-------	--	-------	--	-------	------------

① 开始

点击开始按钮后,将会按如下顺序向 X7023A 发送设置与命令代码。

- 1. 工作控制模式的设置值
- 2. R1寄存器设置值
- 3. 插补模式时为Rs寄存器设置值
- 4. 命令代码

非同步控制时,驱动或计时器将会开始。按钮将会变为停止显示。

同步控制时,将会变为等待点击同步开始按钮。按钮将会变为待机显示。

2 待机

点击同步开始的按钮后,驱动或计时器将会开始。按钮将会变为停止显示。

③ 停止

发送立即停止(30h)的命令代码并且立即停止。停止后按钮将会变为重置显示。

④ 重置

发送工作完成标志重置(A0h)的命令代码。R1寄存器设置值将变为计数器C的值。按 钮将变为开始显示。

2-8-2 定速按钮

#1 定速 #1 定速解除

与功能之间进行切换。

① 定速

发送定速(34h)的命令代码,固定在当前速度。按钮将变为定速解除显示。

② 定速解除

发送定速解除(35h)的命令代码,加减速重新开始。按钮将变为定速显示。 2-8-3 减速按钮

#1 减速 #2 减速解除

与功能之间进行切换。

① 减速

发送减速(32h)的命令代码并开始减速。按钮将变为减速解除显示。

② 减速解除

发送减速解除(33h)的命令代码并解除减速。按钮将变为减速显示。

2-8-4 减速停止按钮

发送减速停止(31h)的命令代码并进行减速停止。

2-8-5 同步开始按钮

同步控制中待机显示的轴的驱动或计时器将会开始。

2-8-6 紧急停止按钮

所有轴立即停止。

2-9-1 计数器A、B

计数器A 与 B 的显示形式会根据计数器A、B的初始设置而发生变化。

	计	数器A、B 的初始设置	
bit5	Bit6	内容	显示形式
0	0	24bit、二补数	-8,388,608~8,388,607
0	1	24bit、绝对值	0~16,777,215
1	0	32bit、二补数	$-2,147,483,648 \sim 2,147,483,647$
1	1	32bit、绝对值	0~4,294,967,295

2-9-2 计数器C

计数器C将会在改写R1参数的同时变更为 R1的值。

同时,当执行了工作完成标志重置(A0h)的命令代码后,计数器C的值将会反映在R1参数中。

2-9-3 计数器D

计数器D 的显示将会根据工作控制模式的减速开始点控制代码的设置发生变化。

	减	这开始点控制代码	
Code2	Code1	内容	显示形式
0	0	自动运算	0~16,777,215
0	1	偏置设置	-8,388,608~8,388,607
1	0	手动设置	R2寄存器设置值
1	1	不执行减速	0~16,777,215

计数器D 将会在改写R2参数的同时变更为 R2的值。设置自动运算时,在开始驱动时将 会被清除为0。

2-9-4 计数器F

显示频率计数器F的值。

- 2-9-5 脉冲率 (pulses per second)
 显示输出脉冲率[pps]。
 脉冲率 = 300 × F / R₀ [pps]
- R₀ > 300 时将以 0.1 为单位显示。

2-10 关于计数器的操作与通用输出的批量设置

2-10-1 计数器的清除

2-10-2 计数器的预设

① 预设值的输入

将光标移动至输入预设值的文本框上。可输入Back space 键与0~9的数字。根据计数器 A、B 的初始设置还可输入一键。

输入Enter 键后,计数器将会被预设。 光标从编辑中的文本框中移开后,显示将会变为0。

② 预设值的范围

	计	数器A、B 的初始设置	
bit5	Bit6	内容	· · · · · · · · · · · · · · · · · · ·
0	0	24bit、二补数	-8,388,608~8,388,607
0	1	24bit、绝对值	0~16,777,215
1	0	32bit、二补数	$-2,147,483,648 \sim 2,147,483,647$
1	1	32bit、绝对值	0~4,294,967,295

2-10-3 通用输出批量设置(16进制数)

将光标移动至批量设置的文本框上。可输入 $Back \ space$ 键、 $0 \sim 9$ 的数字、

A~F、a~f的英文字母。输入Enter 键后 8bit的通用输出将会进行批量设置。光标从文本框中移开后,当前的通用输出状态将会以16进制数显示。

2-11 关于主状态 与输出操作

2-11-1 工作状态

OLR INT DONE	ERR DOW	N UP MOVE
--------------	---------	-----------

种类	显示颜色	说明
MOVE	绿色	动作中
UP	绿色	加速中
DOWN	绿色	减速中
ERR	红色	错误标志为 ON
DONE	绿色	工作完成标志为 ON
INT	绿色	中断标志为 ON
CLR	绿色	CLR 输出为 ON

2-11-2 传感器状态

显示实时状态。

+EL	-EL	+SLD	-SLD	ORG	EZ	MRK

种类	显示颜色	 说 明
MRK	绿色	MARK 输入为 ON
EZ	绿色	EZ 输入为 ON
ORG	绿色	ORGI 输入为 ON
-SLD	绿色	-SLD 输入为 ON
+SLD	绿色	+SLD 输入为 ON
-EL	红色	-EL 输入为 ON
+EL	红色	+EL 输入为 ON

2-11-3 驱动器状态

ALM INP

种类	显示颜色	说明
INP	绿色	INP 输入为 ON
ALM	红色	ALM 输入为 ON

2-11-4 驱动器操作

点击按钮后可通过位运算进行 ON/OFF

种类	显示颜色	说明
SON	蓝色	SON 输出为 ON
CLR	蓝色	CLR 输出为 ON

2-11-5 通用输入状态

IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
-----	-----	-----	-----	-----	-----	-----	-----

种类	显示颜色	说明
INO	绿色	IN0 输入为 ON
IN1	绿色	IN1 输入为 ON
IN2	绿色	IN2 输入为 ON
IN3	绿色	IN3 输入为 ON
IN4	绿色	IN4 输入为 ON
IN5	绿色	IN5 输入为 ON
IN6	绿色	IN6 输入为 ON
IN7	绿色	IN7 输入为 ON

2-11-6 通用输出操作

OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
------	------	------	------	------	------	------	------

点击按钮后可通过位运算进行 ON/OFF

种类	显示颜色	说明
OUT0	蓝色	OUT0 输出为 ON
OUT1	蓝色	OUT1 输出为 ON
OUT2	蓝色	OUT2 输出为 ON
OUT3	蓝色	OUT3 输出为 ON
OUT4	蓝色	OUT4 输出为 ON
OUT5	蓝色	OUT5 输出为 ON
OUT6	蓝色	OUT6 输出为 ON
OUT7	蓝色	OUT7 输出为 ON

2-11-7 比较器状态

P=Q P>Q

种类	显示颜色	说明
P=Q	绿色	P=Q 成立。
P>Q	绿色	P>Q 成立。

3. 关于硬件

3-1 X7023A-EV.BOARD

3-1-1 规格

项 目		内容		
	MCU	STM32F103 LQFP100		
希件	运动 LSI	X7023A 19.6608MHz 2 轴		
通信接口	-	USB2.0标准 12Mbps		
编程&调试 I/F		SWD		
		2时钟方式及脉冲/方向方式		
	时钟输出	#1 轴 差分(线路驱动器)输出		
		#2 轴 集电极开路输出		
驱动器I/F		各轴 2点。伺服打开、偏差计数器重置。		
	驱动奋拴制制出	集电极开路 光电耦合器输出		
	<u>那</u> 古明台日捡)	各轴 2点。报警、就位。		
	^驱 切器信号输入	光电耦合器输入		
	•	各轴 3点。A相、B相、Z相。		
编码器输入 I/F		#1 轴 差分(线路接收器)输入		
		#2 轴 光电耦合器输入		
		各轴 6点、原点、传感器定位、±终端限位、±		
传感益制入 I/F		减速限位		
		电源 ON (蓝色)		
		USB 通信(黄色)		
1 편지 日子		#1 轴驱动中、#2 轴驱动中(蓝色)		
LED WW		#1 轴错误、#2 轴错误(红色)		
		#1 轴比较器、#2 轴比较器(黄色)		
		通用输出 8 点 (黄色)		
		重置 (按键 SW) 通用输		
揭作开兰		入 8 点 (DIP SW)		
採作开关		#1 轴计数器重置、#2 轴计数器重置(DIP SW)		
		外部直线插补信号输入 4 点		
	电源输入	DC5V±5% 500mA (通过USB Vbus 供应)		
中泥	内部电源	$DC3.3V\pm1\%$		
巴你	外部电源输入	DC12~24V(传感器、驱动器用)		
	外部电源输出	DC5V±5%(MAX100mA)(驱动器I/F 用)		
基板尺寸		120×110 (mm)		

3-1-2 方框图

3-1-3 输入输出功能

POUT+、POUT-

为2时钟方式时输入CW 方向指令脉冲,为脉冲/方向方式时输入指令脉冲。#1轴为线路驱动器输出,#2轴为集电极开路输出。

PDIR+、PDIR-

为2时钟方式时输入CCW 方向指令脉冲,为脉冲/方向方式时输入指令方向。#1轴为线路 驱动器输出,#2轴为集电极开路输出。

2时钟方式与脉冲/方向方式

SON

主要用于伺服驱动器的伺服打开以及步进马达的励磁打开。集电极开路输出。可用作通用输出。

CLR

用于清除伺服驱动器的偏差计数器。集电极开路输出。可用作通用输出。

EA, EB

增量编码器的A相与B相的输入。X7023A计数器的外部输入。通过X7023A的设置可选择1、2、4倍频以及2时钟输入。

#1轴为线路接收器输入,#2轴为集电极开路输入。

\mathbf{EZ}

编码器 Z相的输入。#1轴为线路接收器输入,#2轴为集电极开路输入。

ALM

马达驱动器的报警输入。变为激活时会立即停止。

INP

伺服驱动器的就位输入(定位完成)。

MARK

传感器定位输入。在传感器定位时使用。在传感器定位工作以外时可作为通用输入使用。

ORG

原点传感器输入。在原点复位时使用。在原点复位工作以外时可作为通用输入使用。可作 为中断输入使用。

SLD+

+方向的减速输入。通过X7023A的设置可选择减速或减速停止。

SLD-

一方向的减速输入。通过X7023A的设置可选择减速或减速停止。

EL+

+方向的终端限位输入。变为激活时会立即停止。

EL-

一方向的终端限位输入。变为激活时会立即停止。

CLRA

变为ON后计数器A 将清除为 0。通过X7023A 的设置可选择水平工作或边缘工作。

CP0-3

能够在使用多个X7000系列进行直线插补时实施测试。

IN0-7

能够进行通用输入 IN0-7的测试。IN0 可作为中断输入使用。

OT0-7

可监测通用输出 OUT0-7。

MOV

可监测脉冲输出中的信号 MOVE。

ERR

可监测错误停止的信号 ERROR。

CMP

可监测比较器的输出。通过X7023A的设置可切换=或>。

COM

连接USB(CN3)后,本板与 PC 进行通信时将会亮灯。

PWR

从USB(CN3)的Vbus 供应 5V 电源时将会亮灯。

3-1-4 连接器信号配置及功能

① #1 轴传感器驱动器I/F (CN1)

连接器 XG4C-2631

No.	信号名称()	MRON 说 明	No.	信号名称	说明
1	#1POUT+	#1 轴 CW/脉冲输出+	14	#1EB-	#1 轴编码器 B 相输入一
2	#1POUT-	#1 轴 CW/脉冲输出-	15	#1EZ+	#1 轴编码器 Z 相输入+
3	#1PDIR+	#1 轴 CCW/方向输出+	16	#1EZ-	#1 轴编码器 Z 相输入一
4	#1PDIR-	#1 轴 CCW/方向输出-	17	0V	共用
5	#1SON	#1 轴伺服 ON 输出	18	0V	共用
6	#1CLR	#1 轴偏差计数器清除输出	19	#1MARK	#1 轴传感器定位输入
7	+5V_EX	+5V 输出	20	#1ORG	#1 轴原点传感器输入
8	0V	共用	21	#1SLD+	#1 轴+方向减速输入
9	#1ALM	#1 轴驱动器报警输入	22	#1SLD-	#1 轴一方向减速输入
10	#1INP	#1 轴就位输入	23	#1EL+	#1 轴+方向限位输入
11	#1EA+	#1 轴编码器 A 相输入+	24	#1EL-	#1 轴一方向限位输入
12	#1EA-	#1 轴编码器 A 相输入一	$\overline{25}$	0V	共用
13	#1EB+	#1 轴编码器 B 相输入+	26	0V	共用

② #2 轴传感器驱动器I/F (CN2)

连接器 XG4C-2631

No.	(OMRON)	说明	No.	信号名称	说明
1	+5V_EX	+5V 输出	14	#2EB-	#2 轴编码器 B 相输入一
2	#2POUT-	#2 轴 CW/脉冲输出-	15	#2EZ+	#2 轴编码器 Z 相输入+
3	+5V_EX	+5V 输出	16	#2EZ-	#2 轴编码器 Z 相输入一
4	#2PDIR-	#2 轴 CCW/方向输出-	17	0V	共用
5	#2SON	#2 轴伺服 ON 输出	18	0V	共用
6	#2CLR	#2 轴偏差计数器清除输出	19	#2MARK	#2 轴传感器定位输入
7	+5V_EX	+5V 输出	20	#2ORG	#2 轴原点传感器输入
8	0V	共用	21	#2SLD+	#2 轴+方向减速输入
9	#2ALM	#2 轴驱动器报警输入	22	#2SLD-	#2 轴一方向减速输入
10	#2INP	#2 轴就位输入	23	#2EL+	#2 轴+方向限位输入
11	#2EA+	#2 轴编码器 A 相输入+	24	#2EL-	#2 轴一方向限位输入
12	#2EA-	#2 轴编码器 A 相输入一	25	0V	共用
13	#2EB+	#2 轴编码器 B 相输入+	26	0V	共用

③ USB I/F (CN3)

连接器 UB-M5BR-DMP14-4S (JST)

No.	信号名称	说明
1	Vbus	+5V
2	D-	-Data
3	D+	+Data
4	ID	NC
5	GND	GND

(4) SWD I/F (CN4)

```
连接器 XJ8B0611 (OMRON)
```

No.	信号名称	说	明
1	T_VCC	目标基准电压	
2	T_SWCLK	SWD 时钟信号	
3	GND	GND	
4	T_SWIO	IO DATA-PIN	
5	T_NRST	目标重置信号	
6	T_SWO	追踪端口	

⑤ 外部电源输入 (CN5)

9		((01(0)	
	连接器	B2B-XH-A(LF)(SN)	(JST)
No.	信号名称	说明	
1	+12~24V	请连接12~24V的DC电源。	
2	0V		

3-1-5 LED 显示与操作开关

① LED 显示

	<i>5</i> 55 日	说	明
No.	付 亏	熄 灯	亮灯
1	ОТО	通用输出 OUT0 为OFF	通用输出 OUT0 为 ON
2	OT1	通用输出 OUT1 为OFF	通用输出 OUT1 为 ON
3	OT2	通用输出 OUT2 为OFF	通用输出 OUT2 为 ON
4	OT3	通用输出 OUT3 为OFF	通用输出 OUT3 为 ON
5	OT4	通用输出 OUT4 为OFF	通用输出 OUT4 为 ON
6	OT5	通用输出 OUT5 为OFF	通用输出 OUT5 为 ON
7	OT6	通用输出 OUT6 为OFF	通用输出 OUT6 为 ON
8	OT7	通用输出 OUT7 为OFF	通用输出 OUT7 为 ON
9	PWR	Vbus 电源 OFF	Vbus 电源 ON
10	COM	USB 通信 OFF	USB 通信 ON
11	MOV1	#1 轴停止中	#1 轴脉冲输出中
12	ERR1	#1 轴未在错误停止中	#1 轴错误停止中
13	CMP1	#1 轴比较器条件不成立	#1 轴比较器条件成立
14	MOV2	#2 轴停止中	#2 轴脉冲输出中
15	ERR2	#2 轴未在错误停止中	#2 轴错误停止中
16	CMP2	#2 轴比较器条件不成立	#2 轴比较器条件成立

No.	符 号	说明		
		OFF	ON	
1	IN7	通用输入 IN7 设为 OFF	通用输入 IN7 设为 ON	
2	IN6	通用输入 IN6 设为 OFF	通用输入 IN6 设为 ON	
3	IN5	通用输入 IN5 设为 OFF	通用输入 IN5 设为 ON	
4	IN4	通用输入 IN4 设为 OFF	通用输入 IN4 设为 ON	
5	IN3	通用输入 IN3 设为 OFF	通用输入 IN4 设为 ON	
6	IN2	通用输入 IN2设为 OFF	通用输入 IN2 设为 ON	
7	IN1	通用输入 IN1设为 OFF	通用输入 IN1 设为 ON	
8	IN0	通用输入 IN0设为 OFF	通用输入 IN0 设为 ON	

② 通用输入操作开关 (SW1)

③ CLRA、CP0~3 操作开关 (SW2)

No.	符 号	说明		
		OFF	ON	
1	CP3	直线插补输入 CP3 设为 OFF	直线插补输入 CP3 设为 ON	
2	CP2	直线插补输入 CP2 设为 OFF	直线插补输入 CP2 设为 ON	
3	CP1	直线插补输入 CP1 设为 OFF	直线插补输入 CP1 设为 ON	
4	CP0	直线插补输入 CP0 设为 OFF	直线插补输入 CP0 设为 ON	
5	CLRA2	#2 轴 CLRA 输入设为 OFF	#2 轴 CLRA 输入设为 ON	
6	CLRA1	#1 轴 CLRA 输入设为 OFF	#1 轴 CLRA 输入设为 ON	

④ 重置开关 (SW3)

PUSH 后重置STM3232F103、X7023A 以及 USB 线路。

3-1-6 关于输入输出电路与外部连接

② #2 轴POUT、PDIR

<u>X7023A-EV 电路图.pdf</u>

3-1-8 零件表

<u>X7023A-EV 零件表.pdf</u>

3-2 ExIO-01

3-2-1 连接器信号配置及功能

连接插头(CN1)

连接器 XG4H-2631 (OMRON)

No.	信号名称	说明	No.	信号名 称	说明	
1	POUT+	CW/脉冲输入+	14	EB-	编码器 EB一输出	
2	POUT-	CW/脉冲输入-	15	EZ+	编码器 EZ+输出	
3	PDIR+	CCW/方向输入+	16	EZ-	编码器 EZ一输出	
4	PDIR-	CCW / 方向输入-	17	0V	共用	
5	SON	伺服打开输入	18	0V	共用	
6	CLR	偏差计数器清除输入	19	MARK	传感器定位输出	
7	+5V_EX	+5V 输入	20	ORG	原点传感器输出	
8	0V	共用	21	SLD+	+方向减速输出	
9	ALM	报警输出	22	SLD-	一方向减速输出	
10	INP	就位输出	23	EL+	+方向终端限位输出	
11	EA+	编码器 EA+输出	24	EL-	一方向终端限位输出	
12	EA-	编码器 EA一输出	25	0V	共用	
13	EB+	编码器 EB+输出	26	0V	共用	

3-2-2 LED 显示与操作开关

① LED 显示

No.	符 号	说	明
		熄 灯	亮 灯
1	CLR	偏差计数器清除为OFF	偏差计数器清除为ON
2	SON	伺服打开为OFF	伺服打开为ON

② 传感器操作开关(SW1)

No.	符 号	说明		
		OFF	ON	
1	EL-	一方向终端限位输出设为 OFF	一方向终端限位输出设为 ON	
2	EL+	+方向终端限位输出设为 OFF	+方向终端限位输出设为 ON	
3	SD-	一方向减速输出设为 OFF	一方向减速输出设为 ON	
4	SD+	十方向减速输出设为 OFF	+方向减速输出设为 ON	
5	ORG	原点传感器输出设为 OFF	原点传感器输出设为 ON	
6	MARK	传感器定位输出设为 OFF	传感器定位输出设为 ON	
7	INP	就位输出设为 OFF	就位输出设为 ON	
8	ALM	报警输出设为 OFF	报警输出设为 ON	
9	\mathbf{EZ}	编码器 Z 相输出设为 OFF	编码器 Z 相输出设为 ON	
10	EZSEL	编码器 Z 相为集电极开路	编码器 Z 相输出为差分	

3-2-3 检测针(T1~5)

No.	符 号	说明
1	T1	0V (共用)
2	T2	PDIR-与 ExEB-(进行回路连接)
3	Т3	PDIR+与 ExEB+(进行回路连接)
4	Τ4	POUT-与 ExEA-(进行回路连接)
5	T5	POUT+与 ExEA+(进行回路连接)

3-2-4 电路图

<u>ExIO-01 电路图.pdf</u>

3-2-5 零件表

<u>EXIO-01 零件表 200729.pdf</u>

4. 关于固件

4-1 STM32开发环境

4-1-1 开发环境

开发设备

OS

Windows10 64bit 日语版

IDE

SW4STM32

安装文件: install_sw4stm32_win_64bits-v2.8.zip

配置工具

STM32CubeMX

安装文件: en.SetupSTM32CubeMX-5.1.0-RC6.Zip

调试器

ST-LIMK/V3

4-1-2 开发环境安装步骤

① 从STMicroelectronics 的 HP 中下载 SW4STM32 的安装文件进行安装。

② 从STMicroelectronics 的 HP 中下载 STM32CubeMX 的安装文件进行安装。

③ 通过USB连接开发设备与 ST-LINK/V3,并根据需要安装驱动器。 各工具的设置及使用方法请参照STMicroelectronics 的文档。

4-2 设置

<u>X7023A EV 配置.pdf</u>

更新记录

日期	变更记录	Ver.
2021/4/15	暂定版	Ver.0.0.0
2021/7/19	初版	Ver.1.0.0