MCX304 is 4-axis motion control IC which can independently control either stepper motor driver or pulse type servo motor for position and speed control.

Specification

Data bit bus width

4 axes

Drive output pulse at CLK $=16 \mathrm{MHz}$
Output speed range
MHz

Output speed accuracy
1PPS ~ 4MPPS

S-curve jerk
Acceleration/deceleration speed

- Initial speed

Drive speed

- Number of output pulse

Speed curve
Constant, linear acceleration/deceleration or parabola S-curve acceleration/deceleration
Deceleration mode for fixed pulse drive Auto(non-symmetry trapezodial drive is allowd)/manua
The number of output pulse and drive speed during driving are changeable.
Independent 2 pulse system / 1 pulse 1 direction system is selectable.
Logical levels of pulse are selectable.

- Encoder input

2 phase pulse style or Up/down pulse style is selectable.
Pulse of each single, double and quad count edge evaluation is selectable.(2-phase pulse style).
Position counter
Logical position counter(for output pulse) range $-2,147,483,648 \sim+2,147,483,647$
Real position counter (for input pulse) range $\quad-2,147,483,648 \sim+2,147,483,647$
Comparison register
COMP+ register range $\quad-1,073,741,824 \sim+1,073,741,823$
COMP- register range -1,073,741,824 $\sim+1,073,741,823$
Status and signal outputs for the comparisons of position counters
To work as software limit
Automatic home search
Automatic of execution of Step1(high-speed near home search)
\rightarrow Step2(low-speed home search) \rightarrow Step3(low-speed encoder Z-phase search)
\rightarrow Step4(high-speed offset drive).
Enable/disable of each step and search direction are selectable

- Interrupt
.the start/finish of a constant-speed drive during the acceleration/deceleration driving the end of the driving
transition to "position counter \geq the volume of COMPtransition to "position counter < the volume of COMP-
.transition to "position counter \geq the volume of COMP+
transition to "position counter < the volume of COMP+

External signal for driving
EXPP and EXPM signal for +/- direction fixed/continuous pulse drive.
Driving in manual pulsar mode(Encoder input).
-External decelrating/instant stop signal
STOPO ~ 23 points for each axis
Enable/disable and logical levels are selectable.
Input signal for servo motor
ALARM(Alarm) and INPOS(In position check)
■General input/output signal
nput 7 points for each axis (all the points are pin sharing with the other functions)
Output OUT 0~3 4 points for each axis(all the points are pin sharing with the other functions)
Limit signal input
1 point for each +/-direction
Logical levels and decelerating/instant stop are selectable.
Emergency stop signal
EMGN 1 point for all axes
Stop the drive pulse of all axes immediately in Low level
Integral filter built-in
Equipped integral filter in the input column of each input signal.
One time constant can be selected from 8 types.
Electrical characters
Temperature range for operating $0 \sim+85^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \sim 181^{\circ} \mathrm{F}\right)$
Power voltage $+5 \mathrm{~V} \pm 5 \%$ (Consum
Input/output signal level TTL / CMOS level
Input clock 16.000 MHz (Standard.)
Dimension(including pins) $23.8 \times 17.8 \times 3.05 \mathrm{~mm}$ 100-pin plastic QFP, pin pitch $=0.65$

Block Diagram of the X, Y, Z and U-axis Control S
Pin assignment
Input/Output signals ((I): Input (O): Output (B): Bidirectional Each X, Y, Z and U axis has nOOOO signal. "n" means each X, Y, Z and U axis.)

- D15~0(B) Data Bus(D15~8 is pin sharing with nOUT2 and 3) A3~0(I) Adress - CSN(I) Chip select OWRN(I) Write strobe ORDN(I) Read strobe - RESETN(I) Reset
- H16L8(I) 16/8 Data bit bus width selectable $\operatorname{INTN}(\mathrm{O})$ Interrupt $-\mathrm{nPP} / \mathrm{PLS}(\mathrm{O})+$ direction drive pulse/Drive pulse OnPM/DIR(O) - direction drive pulse/Direction

OnECA/PPIN(I) Encoder A-phase/Up pulse OnECB/PMIN(I) Encoder B-phase/Down pulse © INPOS(I) In-position for servo driver ©nALARM(I) Servo driver alarm
-nLMTP(I) + direction limit OnLMTM(I) - direction limit OnSTOP2~0(I) 3points for decelerating/instant stop(nSTOP2 is pin sharing with nOUT1.)
OnDRIVE/OUTO/DCC(O) (DRIVE:Drive pulse outputting status, OUTO:General output, DCC:Sharing pin for Deviation counter clear outputting) OnEXPP(I) External + direction drive, manual pulsar A-phase OnEXPM(I) External -direction drive, manual pulsar B-phase -EMGN(I) Emergency stop CLK(I) Clock 16MHz(Standard)

MCX304 has 32 bit position counter for each X, Y, Z and U axis and function to drive constant speed, linear and S-curve acceleration/deceleration to the maximam speed 4MPPS. Drive command is operated by +/- direction fixed pulse drive or continuous drive basically.

- Fixed pulse:Output the specified pulse number.
- Countinuous pulse:Keep outputting the pulse unlimitedly until the stop factor is generated.

Either drive can be operated in constant speed and linear/S-curve acceleration/decelration by operation parameter and mode setting.

Constant speed / fixed pulse drive	
Speed pps	$\begin{array}{r} \mathrm{R}=8000000 \text { (Multiple:1) } \\ \mathrm{SV}=500 \\ \mathrm{~V}=500 \\ \mathrm{P}=2000 \end{array}$
500	
0	4.0 sec

Trapezodial acceleration/deceleration fixed pulse drive

$\begin{gathered} \text { Speed } \\ 40 \mathrm{~K} \\ \text { pps } \end{gathered}$	S-curve acceleration/deceleration fixed pulse drive
	$\begin{gathered} R=800000(\text { Multiple:10) } \\ K=700 \end{gathered}$
	($\mathrm{A}=\mathrm{D}=200$)
	$\mathrm{V}=4000$
	$\mathrm{P}=30000$
0	1.5 sec

S-curve acceleration/deceleration drive

S-curve acceleration/deceleration has a style to increase or decrease acceleration/deceleration speed by linear function. Therefore, its speed curve moves as parabola S-curve. Triangle forms during S-curve acceleration/deceleration are prevented by a special method as the following figure however the number of output pulse is small. Perfect S-curve acceleration/deceleration drives as quadratic curve without linear accelration/deceleration at all during accelrating/decelerating, contrarily, partial S-curve acceleration/deceleration drives as combining liear and curve driving during accelerating/decelerating.

Automatic deceleration for non-symmetrical trapezodial drive

In non-symmetrical trapezodial acceleration/deceleration drive whose accelerating and decelerating speed are different, automatic decelerating is started since the start point of decelerating is calculated inside MCX304. There is no need to set the start point of decelerating from CPU for users.

As the above figure shows,
when the obejects are moved in up/down direction, gravity acceleration is added. For efective transporting, non-symmetry trapezodial drive is needed.

Non-symmetry trapezodial acceleration/deceleration drive(acceleration<deceleration)

Non-symmetry trapezodial acceleration/deceleration drive(acceleration>deceleration)

Individual acceleration/deceleraion : WR3/D1 =1, Preventing triangle forms $\mathrm{ON}: \mathrm{WR} 3 / \mathrm{D} 5=1$

【Note】In acceleration>deceleration, there is limitation for the rate of acceleration and deceleration which can be operated by automatic deceleration. The limitation depends on the value of driving speed. For example, when the driving speed is 100 kpps , its rate is to $1 / 40$.

The automatic home search function executes the home search sequence from step1:high-speed near home search to step4:high-speed offset drive as the right figure. Set execution/non-execution and search direction mode for each step.

- Search speed

In step 1 and 4, search action is executed by high speed which is set as the drive speed (V). Or, in step 2 and 3 , search action is executed by low speed which is set as the home detection speed(HV)

- Irregular operation

In irregular case, for example, the signal is already active in sensor active part before the searching starts or which is detecting the limit for the direction of movement during searching, the correct home search is executed.

Automatic home search

- Write register

			Symbol	Name	Contents
0	0	0	WR0	Command register	Axis assignment and writing the command code.
0	0	1	XWR1 YWR1 ZWR1 UWR1	X axis mode register 1 Y axis mode register 1 Z axis mode register 1 U axis mode register 1	Setting of the logical levels and enable/disable of external decelerating/instant stop, interruption enable/disable and the operatio mode setting for real posiotion counter for each axis -D5~0 ***-E 0:disable/1:enable ${ }^{* * *}$-L Logical level 0:Low/1:Hi D6: Real position counter cleared by STOP2 signal 0 :disable/1:enable -D7:Real position counter increase/decrease inversion function 0:disable/1:enable -D8:Speed prior in S-curve acceleration/deceleration 0:disable/1:enable -D15~9 0:Interrupt enable/1:disable -D9:Logical/real position counter \geq COMP-variation -D10:Logical/real position counter<COMP-variation -D11:Logical/real position counter<COMP+ variation -D12:Logical/real position counter \geq COMP+variation -D13:The termination of constant speed drive during acceleration/deceleration driving -D14:The start of constant speed drive during acceleration/deceleration driving -D15:Termination of driving
0	1	0	XWR2 YWR2 ZWR2 UWR2	X axis mode register 2 Y axis mode register 2 Z axis mode register 2 U axis mode register 2	Setting of enable/disable of software limit, the mode of the limit input signal, the mode of drive pulse, the mode of encoder input signal and the logical levels and enable/disable of servo motor signal for each axis. -D1, 0 Software limit 0:disable/1:enable - D2 Hardware limit 0:instant/1:decelerating stop - D4, 3 Logical level of limit signal 0:Low/1:Hi OD5 COMP+/- register comparison 0:logical position counter/1:real position counter ©D6 Drive pulse outputting type 0:2-pulse system /1:1-pulse 1-direction system OD7 Logicai level of drive pulse 0:positive logical pulse / 1:negative logical pulse -D8 Logical level of the direction signal 0:Low level for + direction/1:Hi level for + direction -D9 Encoder input signals 0:2-phase pulse/1:Up/Down pulse D11, 10 Encoder input divide 00:1/1, 01:1/2, 10:1/4 -D12 Logical level of ALARM signal 0:Low/1:Hi D13 ALARM signal 0:disable/1:enable -D14 Logical level of INPOS signal 0:Low/1:Hi OD15 INPOS signal 0:disable/1:enable
0	1	1	XWR3 YWR3 ZWR3 UWR3	X axis mode register 3 Y axis mode register 3 Z axis mode register 3 U axis mode register 3	Setting of the manual deceleration, symmmetry/non-symmmetry of acceleration/deceleration, acceleration/deceleration mode, external operation mode, switching between general purpose output and drive status output and input signal filter. Filter time constant Input signal filter enable/disable -D0 Deceleration of fixed pulse drive 0:automatic/1:manual -D1 Decelerating speed 0:using the value of accelerating speed (Symmetry)/1:using the value of decelerating speed(non-symmetry) -D2 Acceleration/deceleration mode 0:Trapezodial/ 1:S-curve -D4,3 External driving operation 00:disable/01:continuous drive/10:fixed pulse drive/11:manual pulsar -D5 Preve ntion of the triangle forms at linear acceleration/decelration driving 0:disable/1:enable -D6 Enable the variabble ring function of position counter 0:disable/1:enable -D8 EMG,LMTP/M,STOP0,1 signal filter 0:disable/1:enable ©D9 STOP2 signal filter 0:disable/1:enable D10 INPOS and ALARM signal filter 0:disable/1:enable ©D11 EXPP/M signal filter 0:disable/1:enable -D15~D13 Setting of input filter time constant $(000: 0.002 \mathrm{msec} / 001: 0.2 \mathrm{msec} / 010: 0.5 \mathrm{msec} / 011: 1 \mathrm{msec} / 100: 2 \mathrm{msec} / 101: 4 \mathrm{~ms}$ ec/ 110:8msec/111:16msec)
1	0	0	WR4	Output register 1	
1	0	1	WR5	Output register 2	
1	1	0	WR6	Write data register 1	Setting of the low word 16-bit for data writing. (D15~D0)
1	1	1	WR7	Write data register 2	Setting of the high word 16-bit for data writing. (D31~D16)

- The above table indicates the address for 16 -bit data bus. In 8 -bit data bus access, the 16-bit data bus are divided into the high word byte (D15~8) and the low word
byte (D7~0) by using address signal A3~A0.
- Each axis has WR1,WR2 and WR3 (mode register 1, 2 and 3). Writing the data in these registers by the same adrress. It depends on the axis assignment of the last command to write the data in the mode register of which axis. Or, uesr can select the axis by writing the NOP command whichis assigned an axis just before.
- At resetting, all the bits of nWR1, nWR2, nWR3, WR4 and WR5 registers are cleared to $0(n=X, Y, Z$ and U). The other registers are undetermined.

Automatic home search mode setting

Mode setting of automatic home search is executed by the setting command of automatic home search mode (60h), writing the axis assignment and the command code 60h in WRO register after setting each bit of WR6 register as follows.

Ad	A1	A	Symbol	Name	Contents
1	1	0	WR6	Write data register 1	

Read register

	A1		Symbol	Name	Contents
0	0	0	RR0	Main status register	Displaying the drive and error status and automatic home search execution status of each axis ．
0	0	1	XRR1 YRR1 ZRR1 URR1	X axis status register 1 Y axis status register 1 Z axis status register 1 U axis status register 1	Displaying the comparison of positoin counter and COMP \pm register，status of aceeleration／deceleration during the driving and driving termination status． Driving termination status －D0 1：position counter \geq COMP＋－D1 1：position counter＜COMP－OD2 1：accelerating－D3 1：constant speed driving －D4 1：decelerating－D5 1：increasing accelerating／decelerating speed OD6 1：constant accelerating／decelerating speed －D7 1 decreasing accelerating／decelerating speed D15～8 1：factor of driving termination
0	1	0	XRR2 YRR2 ZRR2 URR2	X axis status register 2 Y axis status register 2 Z axis status register 2 U axis status register 2	Displaying the error information and the state of automatic home search． －D0 1：＋direction software limit－D1 1：－direction software limit－D2 1：＋direction limit signal on OD3 1：－direction limit signal on－D4 1：alarm signal for servo motor on－D5 1：emergency stop signal on ©D7 1：automatic home search error ©D12～8 1：automatichome searching state（contents of driving）
0	1	1	XRR3 YRR3 ZRR3 URR3	X axis status register 3 Y axis status register 3 Z axis status register 3 U axis status register 3	Displaying the factor of interrupt occring． 1：interrupt occuring Each bit of D7～D0 is corresponding to D15～D9 bit of WR1（mode register1）
1	0	0	RR4	Input register 1	
1	0	1	RR5	Input register 2	
1	1	0	RR6	Read register 1	Displaying the low word 16－bit for the read data．（D15～D0）
1	1	1	RR7	Read register 2	Displaying the high word 16－bit for the read data．（D31～D16）

The above table indicates the address for 16－bit data bus．In 8－bit data bus access，the 16bit data bus are divided into the high word byte（D15～8）and the low word byte
（D7～0）by using address signal A3～A0．
－Each axis has RR1，RR2 and RR3（status register 1，2 and 3）．It can be read the data in these registers by the same address．It depends on the axis assignment of the la st command to read the data in the mode register of which axis．Or，user can select the axis by writing the NOP command which is assigned an axis just before．

－Data writing commnads

Code	Setting Command	Symbol	Data range	Data length （byte）
00	Range	R	R8，000，000（multiple＝1）$\sim 16,000(=500)$	4 bytes
01	Jerk	K	$1 \sim 65,535$	2
02	Acceleration	A	$1 \sim 8,000$	2
03	Deceleration	D	$1 \sim 8,000$	2
04	Initial speed	SV	$1 \sim 8,000$	2
05	Drive speed	V	$1 \sim 8,000$	2
06	Output pulse numbers	P	$0 \sim 268,435,455$	4
07	Manual deceleration point	DP	$0 \sim 268,435,455$	4
09		Logical position counter	LP	$-2,147,483,648 \sim+2,147,483,647$
0A	Real position counter	EP	$-2,147,483,648 \sim+2,147,483,647$	4
OB	COMP＋register	CP	$-1,073,741,824 \sim+1,073,741,823$	4
0C	COMP－register	CM	$-1,073,741,824 \sim+1,073,741,823$	4
OD	Acceleration counter offset	AO	$-32,768 \sim+32,767$	4
0F	NOP（for switching			2
60	Automatic home search mode	HM		
61	Home search speed	HV	$1 \sim 8,000$	2

－Parameter calculation at CLK $=16 \mathrm{MHz}$ Multiple $(M)=\frac{8,000,000}{R}$
Initial speed（PPS）$=S V \times M$
Drive speed（PPS）$=\mathrm{V} \times \mathrm{M}$
Accelerating speed（PPS／SEC）$=\mathrm{A} \times 125 \times \mathrm{M}$
Jerk（PPS／SEC $\left.{ }^{2}\right)=\frac{62.5 \times 10^{6}}{K} \times M$
Decelerating speed（PPS／SEC）$=\mathrm{D} \times 125 \times \mathrm{M}$
Decelerating speed increasing（PPS／SEC）$)^{2}=\frac{62.5 \times 10^{6}}{L} \times M$

Data reading commands

Code	Reading Command	Symbol	Data range	Data length （byte）
10	Logical position counter	LP	$-2,147,483,648 \sim+2,147,483,647$	4 bytes
11	Real position counter	EP	$-2,147,483,648 \sim+2,147,483,647$	4
12	Current drive speed	CV	$1 \sim 8,000$	2
13	Acceleration／deceleration	CA	$1 \sim 8,000$	2

Driving commands

Code	Commands
20	＋direction fixed pulse drive
21	－direction fixed pulse drive
22	＋direction continuous drive
23	－direction continuous drive
24	drive start holding
25	drive start holding release
26	／termination status clear
27	decelerating stop
instant stop	

－Other commnands

Code	Commands
62	Automatic home search execution 63
Deviation counter clear	
output	

