MCX302 is 2-axis motion control IC which can independently control each 2 axes of either stepper motor driver or pulse type servo motor for position and speed control. This IC is pin-compatible with MCX312.

External signal for driving
EXPP and EXPM signal for +/- direction fixed/continuous pulse drive
Driving in manual pulsar mode(Encoder input).
External decelrating/instant stop signal
STOPO ~ 23 points for each axis
Enable/disable and logical levels are selectable.
Input signal for servo motor
ALARM(Alarm) and INPOS(In position check)
-General input/output signal
IN 0~5 6 points for each axis
OUT 0~7 8 points for each axis(pin sharing with drive status output signal)
-Drive status signal output
DRIVE(Driving), ASND(accelerating), DSND(decelerating), CMPP(Position \geq COMP +), CMPM(Position<COMP-), ACASND (accelerating/decelerating speed increasing) and ACDSND (accelerating/decelerating speed decreasing).
Limit signal input
1 point for each +/-direction
Logical levels and decelerating/instant stop are selectable.
Emergency stop signal
EMGN 1 point for all axes
Stop the drive pulse of all axes immediately in Low level.
EIntegral filter built-in.
Equipped integral filter in the input column of each input signal.
One time constant can be selected from 8 types.
Electrical characters
Temperature range for operating $0 \sim+85^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \sim 181^{\circ} \mathrm{F}\right)$
Power voltage $\quad+5 \mathrm{~V} \pm 5 \%$ (Consumption current 50 mA max.)
Input/output signal level TTL / CMOS level
Input clock $\quad 16.000 \mathrm{MHz}$ (Standard.)
Dimension(including pins) $23.8 \times 17.8 \times 3.05 \mathrm{~mm}$
100 -pin plastic QFP, pin pitch $=0.65$

The block diagram of the whole function of MCX302

Pin assignment

Input/Output signals ((I): Input (O): Output (B): Bidirectional Each X and Y axis has nOOOO signal. " n " means each X and Y axis.)

- D15~0(B) Data bus ©A3~0(I) Adress -CSN(I) Chip select OWRN(I) Write strobe ORDN(I) Read strobe ORESETN(I) Reset OH16L8(I) 16/8 Data bit bus width selectable -BUSYN(O)Executing the command ©INTN(O) Interrupt ©SCLK (O) 1/2CLK OnPP/PLS(O) + direction drive pulse/Drive pulse OnPM/DIR(O) - direction drive pulse/Direction OnECA/PPIN(I) Encoder A-phase/Up pulse OnECB/PMIN(I) Encoder B-phase/Down pulse OnINPOS(I) In-position for servo driver OnALARM(I) Servo driver alarm -nLMTP(I) + direction limit OnLMTM(I) - direction limit OnSTOP2~0(I) 3points for decelerating/instant stop OnOUTO~7(O) General output 8 points (DSND:Decelerating, CNST:Constant speed drining, ASND:Accelerating, DRIVE:Drive pulse outputting status, CMPM:P<COMP-, CMPP:P \geq COMP+,
ACDSND:accelerating/decelerating speed decreasing, ACASND/DCC:accelerating/decelerating speed increasing/pin sharing with deviation counter clear and signal)
-nIN5~0(I) General input 6 points $\operatorname{nEXPP}(\mathrm{I})$ External + direction drive, manual pulsar A-phase OnEXPM(I) External -direction drive, manual pulsar B-phase
- EMGN(I) Emergency stop OLK(I) Clock 16 MHz (Standard)

MCX302 has 32 bit position counter for each X and Y axis and function to drive constant speed, linear and S-curve acceleration/deceleration to the maximam speed 4MPPS. Drive command is operated by $+/$ - direction fixed pulse drive or continuous drive basically.

- Fixed pulse:Output the specified pulse number.
- Countinuous pulse:Keep outputting the pulse unlimitedly until the stop factor is generated.

Either drive can be operated in constant speed and linear/S-curve acceleration/decelration by operation parameter and mode setting.

Constant speed / fixed pulse drive	
Speed	
pps	$\mathrm{R}=8000000$ (Multiple:1)
	V $=500$
$500 \square \mathrm{P}$	
0	4.0 sec

Trapezodial acceleration/deceleration fixed pulse drive

S-curve acceleration/deceleration fixed pulse drive

S-curve acceleration/deceleration drive

S-curve acceleration/deceleration has a style to increase or decrease accelerating/decelerating speed by linear function. Therefore, its speed curve moves as parabola S-curve. Triangle forms during S-curve acceleration/deceleration are prevented by a special method as the following figure however the number of output pulse is small. Perfect S-curve acceleration/deceleration drives as quadratic curve without linear accelration/deceleration at all during accelrating/decelerating, contrarily, partial S-curve acceleration/deceleration drives as combining linear and curve driving during accelerating/decelerating.

400KPPS Partial S-curve accelerating/decelerating

Automatic deceleration for non-symmetrical trapezodial drive
In non-symmetrical trapezodial acceleration/deceleration drive whose accelerating and decelerating speed are different, automatic decelerating is started since the start point of decelerating is calculated inside MCX302. There is no need to set the start point of decelerating from CPU for users.

As the above figure shows,
when the obejects are moved in up/down direction, gravity acceleration is added.
For efective transporting, non-symmetry
trapezodial drive is needed.

Non-symmetry trapezodial acceleration/deceleration drive(acceleration>deceleration)

Individual acceleration/deceleraion : WR3/D1 =1,
Preventing triangle forms ON: WR3/D5 =1
【Note】In acceleration>deceleration, there is limitation for the rate of acceleration and deceleration which can be operated by automatic deceleration.
The limitation depends on the value of driving speed. For example, when the driving speed is 100 kpps , its rate is to $1 / 40$.

Automatic home search

The automatic home search function executes the home search sequence from step1:high-speed near home search to step4:high-speed offset drive as the right figure. Set execution/non-execution and search direction mode for each step.

- Search speed

In step 1 and 4, search action is executed by high speed which is set as the drive speed (V). Or, in step 2 and 3 , search action is executed by low speed which is set as the home detection speed(HV)

- Irregular operation

In irregular case, for example, the signal is already active in sensor active part before the searching starts or which is detecting the limit for the direction of movement during searching, the correct home search is executed.

Built-in integral filter

The signal of limit and driving stop for each axis are influenced by external noise.
To cut these noises, photo coupler or CR integral filter is mounted on the circuit normaly. However MCX302 is equipped with integral type filters in the input stage of each input signal. It is possible to set a number of input signals whether the filter function is enabled or the signal is passed through. A filter time constant is selectable from eight stages, min. $22 \mu \mathrm{sec} \sim \max .16 \mathrm{msec}$.

FL2~0	Input delay time
0	2μ SEC
1	256μ SEC
2	$512 \mu \mathrm{SEC}$
3	1.024 mSEC
4	2.048 mSEC
5	4.096 mSEC
6	8.192 mSEC
7	16.384 mSEC

- Write register

-The above table indicates the address for 16 -bit data bus. In 8 -bit data bus access, the 16 -bit data bus are divided into the high word byte (D15~8) and the low word byte (D7~0) by using address signal A3~A0.

- Each axis has WR1,WR2 and WR3 (mode register 1, 2 and 3). Writing the data in these registers by the same adrress. It depends on the axis assignment of the last command to write the data in the mode register of which axis. Or, uesr can select the axis by writing the NOP command whichis assigned an axis just before.
- At resetting, all the bits of nWR1, nWR2, nWR3, WR4 and WR5 registers are cleared to $0(n=X$ and $Y)$. The other registers are undetermined.

- Automatic home search mode setting

Mode setting of automatic home search is executed by the setting command of automatic home search mode (60 h), writing the axis assignment and the command code 60h in WR0 register after setting each bit of WR6 register as follows.

A ${ }^{\text {A }}$	A1	A0	Symbol	Name	Contents
1	1	0	WR6	Write data register 1	 Setting of deviation counter clear outputting Step4 Step3 Step2 Step1 - D6,4,2,0 STm-E Stepm execution 0:non-execution/1:execution - D7,5,3,1 STm-D Stepm search direction 0:+ direction 11:- direction -D8 Logical/real position counter clear after Step4 is executed 0:disable/1:enable -D9 AND of Z-phase signal and home signal at Step3 0:disable/1:enable -D10 Using limit signal as home signal 0:disable/1:enable -D11 Deviation counter clear outputting 0:disable/1:enable -D12 Deviation counter clear outputting and logical level 0:active Hi/1:Low -D15~13 Deviation counter clear outputting active pulse width(000:0.01msec/ 001:0.02msec/ $010: 0.1 \mathrm{msec} / 011: 0.2 \mathrm{msec} / 100: 1 \mathrm{msec} / 101: 2 \mathrm{msec} / 110: 10 \mathrm{msec} / 111: 20 \mathrm{msec})$

Read register

	A1		Symbol	Name	Contents
0	0	0	RR0	Main status register	Displaying the drive and error status and automatic home search execution status of each axis .
0	0	1	XRR1 YRR1	X axis status register 1 Y axis status register 1	Displaying the comparison of positoin counter and COMP \pm register, status of aceeleration/deceleration during the driving and driving termination status. Driving execution status -D0 1:position counter \geq COMP+ -D1 1:position counter<COMP- -D2 1:accelerating -D3 1:constant speed driving -D4 1:decelerating -D5 1:increasing accelerating/decelerating speed OD6 1:constant accelerating/decelerating speed -D7 1 decreasing accelerating/decelerating speed -D15~8 1:factor of driving termination
0	1	0	XRR2 YRR2	X axis status register 2 Y axis status register 2	Displaying the error information and the state of automatic home search.
0	1	1	XRR3 YRR3	X axis status register 3 Y axis status register 3	Displaying the factor of interrupt occring. 1: interrupt occuring Each bit of D7~D0 is corresponding to D15~D9 bit of WR1 (mode register1)
1	0	0	RR4	Input register 1	
1	0	1	RR5	Input register 2	
1	1	0	RR6	Read register 1	Displaying the low word 16-bit for the read data.(D15~D0)
1	1	1	RR7	Read register 2	Displaying the high word 16-bit for the read data.(D31~D16)

The above table indicates the address for 16-bit data bus. In 8-bit data bus access, the 16bit data bus are divided into the high word byte (D15~8) and the low word by te (D7~0) by using address signal A3~A0.
Each axis has RR1,RR2 and RR3 (status register 1,2 and 3). It can be read the data in these registers by the same address. It depends on the axis assignment of the last command to read the data in the mode register of which axis. Or, user can select the axis by writing the NOP command which is assigned an axis just before.

- Data writing commnads

Code	Setting Command	Symbol	Data range	$\begin{array}{\|c\|} \hline \text { Data length } \\ \text { (byte) } \end{array}$	- Parameter calculation at CLK= 16 MHz
00	Range	R	R8,000,000 (multiple=1) ~ 16,000 (=500)	4 bytes	$\text { Multiple }(M)=\frac{8,000,000}{R}$
01	Jerk	K	1 ~ 65,535		R
02	Acceleration	A	$1 \sim 8,000$	2	Initial speed(PPS) $=$ SV $\times \mathrm{M}$
03	Deceleration	D	1 ~ 8,000	2	
04	Initial speed	SV	$1 \sim 8,000$	2	Drive speed(PPS) $=\mathrm{V} \times \mathrm{M}$
05	Drive speed	V	1 ~ 8,000	2	
06	Output pulse numbers	P	$0 \sim 268,435,455$	4	Accelerating speed(PPS/SEC) $=\mathrm{A} \times 125 \times \mathrm{M}$
07	Manual deceleration point	DP	0 ~ 268,435,455	4	$\operatorname{Jerk}\left(\text { PPS } / \text { SEC }^{2}\right)=\frac{62.5 \times 10^{6}}{K} \times M$
09	Logical position counter	LP	-2,147,483,648 ~ +2,147,483,647	4	
0A	Real position counter	EP	-2,147,483,648 ~ +2,147,483,647	4	ecelerating speed(PPS/
OB	COMP+ register	CP	-1,073,741,824 ~ +1,073,741,823	4	Decelerating speed increasing (PPS/SEC) ${ }^{2}=\frac{62.5 \times 10^{6}}{}$
OC	COMP- register	CM	$-1,073,741,824 \sim+1,073,741,823$ $-32,768 \sim+32,767$	4	Decelerating speed increasing (PPS/SEC) $=\frac{62.5 \times 10}{L} \times \mathrm{M}$
OD	Acceleration counter offset NOP(for switching)	AO	-32,768 ~ +32,767	2	
60	Automatic home search mode	HM		2	
61	Home search speed	HV	$1 \sim 8,000$	2	

Data reading commands

Driving commands

Code	Commands
20	+direction fixed pulse drive
21	-direction fixed pulse drive
22	+direction continuous drive
23	-direction continuous drive
24	drive start holding
25	drive start holding release
26	/termination status clear
27	decelerating stop
instant stop	

Other commnands

Code	Commands
62	Automatic home search execution 63 Deviation counter clear output

11 Logical position counter
11 Real position counter

Current drive speed | Acceleration / deceleration | CA | $1 \sim 8,000$ |
| :--- | :--- | :--- |
| $1 \sim 8,000$ | | |

Data length
(byte)
4 bytes
4
2
2

